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Exactly solved Frenkel-Kontorova model with multiple subwells
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We exactly solve a class of Frenkel-Kontorova models with a periodic potential composed of piecewise
convex parabolas having the same curvature. All rotationally ordered stable configurations can be depicted with
appropriate phase parameters. The elements of a phase parameter are grouped into subcommensurate clusters.
Phase transitions, manifested in the gap structure changes previously seen in numerical simulations, correspond
to the splitting and merging of subcommensurate clusters with the appearance of incommensurate nonrecurrent
rotationally ordered stable configurations. Through the notion of elementary phase shifts, all the possibilities
for the existence of configurations degenerate with the ground state are scrutinized and the domains of stability
in the phase diagram are characterized. At the boundaries of a domain of stability, nonrecurrent minimum
energy configurations are degenerate with the ground state configurations and phase transitions occur.
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I. INTRODUCTION

Spatially modulated structures have been experiment
observed in many condensed matter physical systems.1 The
wave-vector characterizing the modulation varies with ex
nal parameters sometimes in a continuous manner but o
remains constant, equal to a certain rational locking va
through some range of the external parameters. The phy
origin of this complicated behavior is understood in terms
competing interactions in the free energy of the system.
Frenkel-Kontorova~FK! class of models is one of the sim
plest among those models displaying such interes
behavior.2 In this work, we will investigate a generalizatio
of the ‘‘locking’’ behavior in a specific FK model and sho
that as the external parameters are adjusted to the boun
of the ‘‘locking’’ region, some ‘‘nonrecurrent’’ configuration
becomes degenerate with a recurrent one.

The FK model describes a one-dimensional chain
coupled atoms subject to a periodic potentialV(u). The
Hamiltonian of the system is given by

H~$un%!5(
n

F1

2
~un2un21!21lV~un!G , ~1.1!

whereun denotes the position of thenth atom. In the limit of
shallow potential (l→0), the atoms are kept at an equilib
rium distance by a tensile forces. Such models are als
widely studied in the context of two-dimensional are
preserving twist maps.3 The period of the potential can be s
to 1 by choosing a suitable spatial scale. The amplitude
the external potentiall can be regarded as a measure of
nonlinearity.

For a stationary configuration one has]H/]un50 and
thus

un1122un1un215lV8~un!. ~1.2!

This equation can be recast as coupled first order differe
equations, which provides the correspondence between
0163-1829/2002/66~18!/184108~22!/$20.00 66 1841
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tionary configurations in an FK model and orbits in a tw
map.4 In this paper, we will use these two sets of langua
interchangeably.

In the study of FK models, one is particularly concern
with minimum energy configurations5 ~or minimizing
orbits3!, in which H cannot be decreased by altering a fin
number ofun’s. In the case where the potentialV(u) satisfies
some criteria,6 there is a well-defined winding number fo
these configurations

v[ lim
N,N8→`

uN2u2N8

N1N8
, ~1.3!

the inverse of which 1/v gives the average number of atom
per period of the potential. A ground state configuration
by definition, a recurrent minimum energy one, and can
depicted by5

un5 f v~nv1a!, ~1.4!

where the hull functionf v(x) is an increasing function ofx
and satisfies

f v~x11!5 f v~x!11. ~1.5!

a is a phase variable to determine the relative position of
atomic chain with respect to the periodic potential. Asl
increases, the plot of the orbit~defined on a cylinder! for an
incommensurate ground state undergoes a transition fro
KAM invariant curve, corresponding to an unpinned pha
to a Cantor-Aubry-Mather~CAM! set7 or a cantorus, corre-
sponding to a pinned phase. In the latter casef v(x) fails to
be a continuous function and the positions of the atoms
be depicted by choosing either the right-hand side lim
f v

r (x) or the left-hand side onef v
l (x) when a discontinuity is

encountered. The transition, featured by the breaking of
KAM invariant curve, is termed ‘‘the transition by breakin
of analyticity’’ ~TBA!.2,4,5 On the other hand, for a rationa
v, the hull function is piecewise constant8 unless there is a
zero-frequency phonon mode.5 More specifically, for v
5p/q ~assumed to be irreducible throughout this paper! and
©2002 The American Physical Society08-1
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without distinct ~stated explicitly later! degenerate ground
state configurations, the hull function is composed of p
teaux, each with width 1/q. The incommensurate hull func
tion can be obtained as a limit of commensurate h
functions.8

In the study of the area-preserving twist map~always con-
sidered to be defined on the cylinder!, the invariant set is of
fundamental importance. In the incommensurate case,
pending on whether it is a KAM curve or a cantorus, t
invariant set plays the role of a total or a partial barri
respectively, for the transport in the phase space.9,10 Even if
the invariant KAM curve is broken, its remnants, the ro
tionally ordered~RO! invariant set still satisfies Eq.~1.2! and
is semiconjugate to a rotation by a continuous mapp
which is one-to-one but defined on a countable set.11

The first analytical study on FK models was conducted
Aubry,4,12 where TBA was proposed and a devil’s stairca
was explicitly derived to exhibit the locking of winding num
bers to rationals. The potential is the simplest nonlinear
in that the nonlinearity only occurs at one point in each
riod. Simple as the model may seem, it captures the ess
of the ‘‘cantorus’’ phase and features a lot of unstable regu
structures generically found in typical twist maps for lar
nonlinearity parameters.13

In this paper, we will exactly solve an extension of t
Aubry model, where the potential hasd subwells in a period.
This model was first proposed by Griffithset al.14 Several
interesting new phenomena such as the nonrecurrent m
mum energy~NRME! configuration in the incommensura
case, discontinuous cantorus-cantorus phase transitions~i.e.,
phase transitions in the gap structure!, and independent orbit
of gaps composing the complement of the CAM set~i.e., a
gap structure with multiple discontinuity classes or holes15!
were found in thed52 case. Recent work on this model16,17

concentrated on acquiring ground state configurati
through studying directional derivatives of the energy fun
tion, giving the average energy per atom, with respect to
elements in the phase parameter~defined later!. However, as
we shall see, for a given set of winding number and ph
parameter, the depicted RO configurations may not be un
up to shift operations~defined later!. Thus the correspon
dence between RO configurations and phase paramete
not quite clear, and the meanings of the energy function
well as its derivatives for an arbitrary phase parameter
obsessed with ambiguity. Moreover, the above mentio
new phenomena found in thed52 case have not been an
lyzed in the general case.

To resolve the ambiguity, we will provide two ap
proaches. We first introduce the notion of subcommensu
clusters for the elements of a phase parameter. A phase
rameter with multiple subcommensurate clusters builds u
composite hull function to describe a mixed phase. T
meaning of the energy function on the whole space of ph
parameters is thus clarified and the procedures adopte
Refs. 16 and 17 can be justified. Instead of studying
average energy per atom, another approach to determine
given RO configuration is a ground state one is conduc
through studying the energy differences resulting from m
ing some of the atoms across the potential tips~defined
18410
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later!. To keep the resultant configurations RO, we find th
only a limited number~at most 2d22 for the case withd
subwells in each period of potential! of such operations nee
be investigated. The evaluation of these energy difference
further reduced to solving a set of linear relations amo
some atomic positions.

The presence of multiple subcommensurate clusters in
phase parameter, as we shall see, naturally leads to mu
compatible configurations~the mixed phase, see Sec. IV! in
the commensurate case. To carry the notion of compat
configurations to the incommensurate case, we have to in
duce the notion of extended numbers18 as the elements in the
phase parameter and then the nonrecurrent RO~NRO! struc-
ture automatically emerges.

The paper is organized as follows. In Sec. II, we defi
the FK model to be investigated and establish a one-to-
correspondence between stable configurations and codin
quences. RO configurations and the corresponding phase
rameters are introduced in Sec. III. An associated ene
function, giving the average energy per atom, is also deriv
In Sec. IV, composite hull functions are introduced to dep
multiple compatible configurations. As the notion of comp
ible configurations is carried over to the incommensur
case, the NRO configuration emerges. Two approache
determine minimum energy configurations are provided
Sec. V. In Sec. VI, we build up the phase diagram and ch
acterize the domain of stability. In Sec. VII, incommensura
NRME configurations are investigated. It is found that t
NRME configuration naturally emerges at the boundary
the domain of stability. Though some of the results conce
ing the gap structure in the incommensurate case have
briefly reported in Ref. 18, we provide all the details to ma
this paper reasonably self-contained.

II. THE MODEL

The potential of period 1, withd pieces of parabolas in
each period, is given by

V~u!5min
i

$Vi~u!%, ~2.1!

where

Vi~u!5
1

2
~u2bi !

21hi ~2.2!

with hd1 i5hi andbd1 i511bi for every integeri. Here,hi ’s
andbi ’s are independent parameters, arranged in the ord

b1,b2,•••,bd,11b1 . ~2.3!

RequiringV(u) to be continuous, the positions of the tip
are given by

t i5
bi1bi 11

2
1

Dhi

Dbi
~2.4!

with Dhi[hi 112hi andDbi[bi 112bi . We set

t050,t1,•••,td51, ~2.5!
8-2
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EXACTLY SOLVED FRENKEL-KONTOROVA MODEL WITH . . . PHYSICAL REVIEW B 66, 184108 ~2002!
where the conditiont050 is chosen to fix the translationa
degree of freedom, leading to

h11b1
2/25h01b0

2/2. ~2.6!

An example ford53 is shown in Fig. 1. Particularly fo
t j 21,u,t j , Vj (u) should be the one picked up to minimiz
V(u) in Eq. ~2.1!. This potential branch is named thejth
subwell~or branch! and the collection of all thoseith subwell
with i 5 j (modd) are named thejth type of subwells. The
tips at the right ends of those subwells are called thejth tip
and thejth type of tips, correspondingly. Since only the re
tive value of the potential height is relevant andt050, there
are 2d22 degrees of freedom in defining the potential. F
convenience, we will chooset[$t050,t1 ,t2 , . . . ,td21% and
b[$b1 ,b2 , . . . ,bd% as the potential parameters.T andB are
employed to denote the sets oft andb, respectively, satisfy-
ing Eqs.~2.5! and ~2.3!. The constraint

b05 (
i 51

d21

t iDbi2
1

2
, ~2.7!

implied in Eqs.~2.4! and~2.6!, reduces a degree of freedo
in the set of 2d21 variables.

The force-balance equation is given by

un111un212~21l!un52lb~un!, ~2.8!

with b(un) equal to eitherbi , if t i 21,un,t i , or b(t i)
[(bi1bi 11)/2, if un5t i . The latter assignment is the ave
age ofb(t i

1) andb(t i
2), which is not compulsory. However

it is irrelevant as long as only the stable configurations
concerned, for which no atoms can be located at the tips.
reason is as follows. The derivatives of the system ene
with respect to the position of the atom right att i are
l@b(t i)2b(t i

2)# and l@b(t i)2b(t i
1)# for infinitesimal

negative and positive displacements, respectively. No ma
how b(t i) is assigned, there must be eitherb(t i

2)2b(t i)
,0 or b(t i

1)2b(t i).0. Thus such a configuration cann
be a stable one and, needless to say, a minimum energy
This fact implies that the fundamental lemma in Ref. 5 a
plies for minimum energy configurations in this FK mod
and, accordingly, minimum energy configurations must

FIG. 1. Periodic potentialV in Eq. ~2.1! for d53.
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RO.15,19–21The exact values ofb(t i)’s are relevant for mini-
max orbits.3 Throughout this paper onlystable configura-
tions are of our concern. In fact, as we will show in Sec.
there is some depletion region around each tip, where
atom could visit in minimum energy configurations.

In the terminology of dynamical systems, the FK mod
under investigation satisfies the criterion for a tw
homeomorphism22,23 and the stable configurations corr
spond to solutions of the Euler-Lagrange equation due
Percival.24 All the properties derived there without involvin
the smoothness of the homeomorphism apply here. In
ticular, the winding number is a continuous function of t
hull function in the Hausdorff topology, which guarante
that the property of the incommensurate case can be der
as a limit of that of the commensurate cases and vice vers25

In the following, we will adopt the strategy to discuss th
commensurate case first and then take the incommens
case as a limit of commensurate cases.

The formal solution for a stable configuration is given

un5d0 (
k52`

`

e2ukuxb^n1k& , ~2.9!

where e2x[@11l/22Al(11l/4)# and d0[tanh(x/2).
Here,$b^n&% or $^n&% ~Ref. 26! is the coding sequence. The
must satisfy

b^n&5b~un! or, equivalently, t ^n&21,un,t ^n&
~2.10!

in order to consist with Eq.~2.8! so that$un% denotes astable
configuration. In other words, thên& designates the poten
tial branch picked up byun in Eq. ~2.1! for everyn. In this
manner, we provide a one-to-one correspondence betwe
stable configuration of the FK model and an allowed cod
sequence$^n&% or $b^n&% of the symbolic dynamics27 with
Eq. ~2.10! employed to prune unallowable sequences.

One should note that, for a stable configuration in our
model, the phonon gap28 is Al/m with m denoting the
atomic mass and the gap parameter7,28 is given by l/(4
1l). Consequently, all these configurations are uniform
hyperbolic28 and have nonvanishing phonon gaps forl.0.
All the theorems and corollaries in Appendix B of Ref. 1
apply here. Losing the phonon gap happens as some con
ous variations in the potential parameters forceun to touch
t ^n&21 or t ^n& for a certainn when the configuration ceases
be stable. As a result, this configuration loses its unifo
hyperbolicity and disappear through bifurcation.29

III. ROTATIONALLY ORDERED CONFIGURATIONS

Two configurations$un% and $vn% are said to intersect if
there areun>vn andum<vm for somen andm. While, they
are said tocoincide if un5vn for every n. $un% and $un1m
1 l % with arbitrary integersm and l, will not be regarded as
distinct since they can be made coincident by the shift o
eration, including shifts in theu axis by integers~periods of
the potential! and in the numbering of the atoms. An incom
mensurate RO configuration should not self-intersect,
not to intersect its own shifts~by applying the shift operation
8-3
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to itself!,15,19 while for the commensurate case, an RO co
figuration should not intersects, unless coincides with,
own shifts. According to the fundamental lemma in Ref.
all minimum energy configurations in our model must be R
~an FK model allowing of minimum energy configuration
not RO, even without a well-defined winding number w
discussed in Ref. 30!.

A related concept called compatibility~after Katok in Ref.
25! will be employed in later discussions for degener
ground state configurations. Two distinct configurations
said to be compatible if they cannot be made to inters
through any shift operation~and, therefore, it is apparent th
each compatible configuration must itself be RO!. The crite-
rion for $un% and$vn% to be compatible can be recast as, f
any n and m, Frac@un#.Frac@vm# implies un612Int@un#
.vm612Int@vm# and vice versa. If we exclude the possib
ity of discommensurations~which is not of concern in this
paper, one may refer to Refs. 5 and 18 for details!, two phase
variablesa and b can be found such that the order of th
union of two sequences$Frac@nv1a#u2`,n,`% and
$Frac@mv1b#u2`,n,`%, arranged according to th
magnitude, is kept in the union of sequences$Frac@un#
u2`,n,`% and $Frac@vm#u2`,m,`%. An illustration
for RO and compatible configurations is shown in Fig.
These properties are closely related to the fact that two c
patible configuration can be depicted by a single hull fu
tion, as will be shown in the next section.

Next, we would like to depict a given RO stable config
ration with a hull function. Consider the commensurate c
with v5p/q at first. To avoid variations due to shift oper
tions, we demand 0<u0,1 andn50 to be the one mini-
mizing Frac@un# in $un% ~termed the fixing condition!, which
leads to Int@un#5Int@nv# for all n. We further introduce a
set of integersni ’s such thatn5ni is the one minimizing
Frac@un2t i # in $un% for 0, i ,d. Define the phase param
eterb[$b050,b1 , . . . ,bd21% by

b i[Frac@niv# ~3.1!

for 0< i ,d and useb i 1d511b i to extend the definition of
b i for arbitrary integeri. The $ni j %, satisfying

Frac@ni j v#5Frac@b i2b j # ~3.2!

FIG. 2. ~a! The cyclic order~counterclockwise! of an RRO con-
figuration$un% with v52/5. ~b! The cyclic order of a configuration
with the samev but not RRO.~c! The cyclic order of two compat-
ible configurations$un% ~solid circles! and$vm% ~open circles! with
v52/5.
18410
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for 0< i , j ,d, is also introduced for later use. The values
ni andni j are required to be within (2q/2,q/2# in order to be
uniquely determined.

For an RO stable configuration$un%, there must be
t i,un,t i 11 for b i<nv,b i 11. Introduce n
[$n1 ,n2 , . . . ,nd%, given byn i[b i2b i 21 for eachi, with
the physical meaning as follows. Consider the model a
twist map defined on a cylinder@0,1)3R with un replaced
by Frac@un#. All atomic positions for$un% form a set ofq
points, called the periodic cycle.n i denotes the atomic frac
tion located inside theith type of subwells.n must be a
partition of unity, i.e.,n i>0 andn11n21•••1nd51.

The hull function to depict$un% through Eq.~1.4! will be
denoted byf v(x), where the parameterv[(v,b) explicitly
reveals the dependence onb. The restriction f v

l (0),0
< f v

r (0), is adopted to pin down the translational degree
freedom in the origin of thex axis. Define a coding function
b̃b(x) by b̃b(x)[bi , as well ash̃b(x)[hi ~for later use!, for
b i 21<x,b i . One can introduce the hull function, given b

f v~x!5d0 (
n52`

`

e2unuxb̃b~x1nv!

5d0 (
n52`

`

e2unuxInt@x1nv#

1d0(
i 51

d

bi (
n52`

`

e2unux~ Int@x1nv2b i 21#

2Int@x1nv2b i # !

511bj1d0 (
i 5 j

j 1d21

Dbi (
n52`

`

e2unux

3Int@x1nv2b i # ~3.3!

with any integerj. This hull function satisfies the equation o
motion

f v~x1v!1 f v~x2v!2~21l! f v~x!52lb̃b~x!.
~3.4!

Both b̃b(x) and f v(x) are increasing inx. The consistency
condition for stable configurations is given by

f v
l ~b i !,t i, f v

r ~b i ! ~3.5!

for eachi. As will be shown in Sec. VI, Eq.~3.5! can always
be respected, for any prescribed set ofv and Db
[$Db1 ,Db2 , . . . ,Dbd21%, by choosing an appropriate se
of t.

Particularly, forv5p/q, every elementb i in b should be
restricted in the form ofl i /q with integers 05 l 0< l 1<•••

< l d21<q so that with any choice of phase variablea, the
hull function will depict a specific RO configuration and a
its shifts through Eq.~1.4!.

The coding function and hull function, introduced abov
apply as well for the incommensurate case, withn denoting
8-4
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limiting values~since an infinitely long, but not repetitious
atomic chain is considered! of atomic fractions. The details
will be given elsewhere.31

A crucial point is that, for givent andDb, there are ge-
nerically d21 degrees of freedom in choosing theb to sat-
isfy Eq. ~3.5!. Consequently, for a givenv, there is a (d
21)-parameter family of RO stable configurations, as co
pared to the uniqueness of the RO stable configuration in
case with a single-well potential in each period.18 Such a
difference will lead to the existence of multiple compatib
RO stable configurations, as will be discussed in the n
section. Particularly, the existence of the (d21)-parameter
family of RO solutions to the corresponding Euler-Lagran
equation of Percival, instead of being an artifact due to
specific choice of the nonanalytical potential, was also
served numerically in a model with smooth potential.32 Thus,
the phenomena described afterwards that result from the
istence of additional parameters to characterize RO st
configurations must be applicable to quite a general clas
FK models.

To the atomun , one can assign the amount of energy

E~un!5
1

4
~un112un!21

1

4
~un2un21!21

l

2
@un2b~un!#2

1lh~un!, ~3.6!

whereh(un)5hi if b(un)5bi . The average energy per ato
for $un% is given by

Eav5 lim
N,N8→`

1

N1N811
(

n52N8

N

E~un! ~3.7!

if the limit exists. For an RO configuration, this limit alway
exists and Eqs.~3.6! and ~3.7! can be replaced by

Ev~x!5
1

4
@ f v~x1v!2 f v~x!#21

1

4
@ f v~x!2 f v~x2v!#2

1
l

2
@ f v~x!2b̃b~x!#21lh̃b~x! ~3.8!

as well as

Eav5 lim
N,N8→`

1

N1N811
(

n52N8

N

Ev~a1nv!, ~3.9!

with the phase variablea corresponding tou0 . Ev(x) is
periodic inx with period 1.

Once the hull function is obtained, a useful quanti
called the energy function, can be derive
straightforwardly,16,18 given by
18410
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C~v![E
0

1

Ev~x!dx

5
v2

2
1l(

i 51

d

hin i1
l

2 (
0< i , j <d21

@~bi2bj !

3~11bi2bj !n in j #2
l d0

4 (
n52`

`

e2unux

3F (
i , j 50

d21

DbiDbj S~nv1b j2b i !G ~3.10!

with S(x)[Frac@x#(12Frac@x#). The energy function gives
the energy averaging, with uniform weight, over the pha
variablea since the integration overx is conducted. In the
incommensurate case,C(v) andEav are equivalent no mat
ter which a is chosen in Eq.~3.9! according to the Weyl’s
criterion33 sinceEv(x) is Riemann integrable.34 In the com-
mensurate case, different RO configurations may be depi
with different choices ofa in Eq. ~1.4!, as will be discussed
in the following section.

IV. COMPATIBLE CONFIGURATIONS

In the phase diagram, the boundary between two ne
boring domains of stability is where these two phases coe
~become degenerate!. As we will see in the next section
degenerate ground state~minimum energy! configurations
must be compatible. Therefore, to built up the phase d
gram, we should identify the compatible configurations
first. Here we will begin with the compatible configuration
in the commensurate case.

As shown in the last section, with every elementb i in b
restricted in the form ofl i /q for integers 05 l 0< l 1<•••

< l d21<q, the depicted configurations are a specific RR
~recurrent or repetitious RO! configuration withv5p/q and
all its shifts. Thus a b, with all elements in Sv

[$Frac@nv#u2`,n,`%, as well as its accompanying cod
ing function and hull function are termed elementary a
denote a pure phase. The union of all pure phases consti
a set of finite points~countably infinite many points but with
null measure in the incommensurate case! of the the phase
parameter spaceV[$bu05b0<b1<•••<bd21<bd51%.

In Refs. 16 and 17, the ground state configurations
found through studying directional derivatives of the ener
function with respect to the elements in the phase param
In this approach, the values of the energy function asb var-
ies continuously are of concern. Thus the contents of
energy function evaluated at a nonelementaryb should also
be examined in order to justify such an approach. As a res
the composite phase parameter, consisting of more than
subcommensurate clusters and thus depicting more than
distinct compatible RO stable configurations, is introduc
The composite phase parameter is proposed to deno
mixed phase, with the abundance associated with each p
phase specified byb in a proper way described below.

Consider the pure phase first. For a given RRO sta
configuration$un% with v5p/q, we introduce the coding
8-5
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function satisfyingb̃b(x)5b(un) for nv<x,nv11/q and
1<n<q. In this way, the associatedb is automatically el-
ementary. On the other hand, for each elementary phase
rameterb with respect to the winding numberp/q, one can

define an increasing coding functionb̃b(x). If the accompa-
nying hull function satisfies Eq.~3.5!, there exists an RRO
stable configuration with winding numberp/q depicted by it.
In this manner, we build up a one-to-one corresponde
between an RRO stable configuration with all its shifts a
an elementary phase parameterb with the accompanying
hull function consistent with Eq.~3.5!.

Now let us look into the gap~the discontinuity in the hull
function! structure for the pure phase. The invariant
$Frac@ f v(x1nv)#u2`,n,`%, defined on the circle@0,1),
will be denoted bySv(x) and Sv[ø0<x,1Sv(x). For an
elementaryb, the value ofx is irrelevant andSv5Sv(x). In
Sv , there is one hole~discontinuity class! composed ofq
gaps, which come in orbits cyclically15 and are the disconti
nuities of f v(x) located atx5 i /q for every 0< i ,q. For all
the otherx, one hasd fv(x)/dx50.

The gap structure can be analyzed according to
amount of discontinuity resulting from a certainDbi in Eq.
~3.3!. Associated with eachDbi for 0< i ,d, there is a prin-
ciple opening~referring to a certain amount of discontinui
in the gap! at x5b i ~positioned aroundu5t i and this veryi
will be employed to characterize the specific type of op
ings!. The principal opening has widthd0Dbi and carries a
sequence of derived openings, atx5Frac@b i1nv# for all n,
having widthse2unuxd0Dbi . The width of the gap inf v(x) at
x5 j /q[Frac@mjv# with some 0< j ,q is given by
( i 50

d21xq(mj2ni)d0Dbi , where theni ’s are given in Eq.
~3.1! and xq(n)[(m52`

` e2un1mqux. Every gap containsd
types of openings~referring to the summation overi ), each
from a certainDbi , due to theresonanceamongd types of
openings. Particularly, for a given integer 0< l ,q, there ex-
ists an integer 0<ki,q such that Frac@b i1kiv#5 l /q for
eachb i ; therefore,d types of openings merge to form a ga
and we say that openings ofd types are in resonance.

In fact, there is another kind of resonance among op
ings for repetitious configurations. The factorxq(n)
5(m52`

` e2un1mqux, instead of a single terme2unux as ap-
peared in Eq.~3.3!, is employed to take account of the res
nance among openings of the same type. Specific
b i 1mpd5b i1mp for every integerm so that each opening
resulting fromDbi , merges with one of the openings, fro
Dbi 1mpd. Such resonance occurs only in the commensu
case and it allows the emergence of commensurate N
configurations.18

The connecting points of neighboring gaps compose
periodic cycleSv . This Sv is an invariant set19 in the sense
that it is invariant under the twist map and it is also a mi
mal set35 in the sense that it has no invariant proper subs

Next, let us turn to the mixed phase with a compos
phase parameter. We shall find that the range of the com
ite hull function carries a gap structure with multiple hole
which provides a valuable example for us to inspect suc
18410
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gap structure in an analytical way. As we proceed to imp
ment the phase parameter to depict multiple compatible
stable configurations, one will find that all the restrictio
imposed onb could, indeed, be loosened except the one w
bPV.

Consider two compatible stable configurations$un% and
$un8% both observing the fixing condition. They must have t
same winding numberv5p/q. Without loss of generality,
assumeun<un8 and these two compatible configuration
must be related in such a way that

H un1m8 .un1m.un81 l .un1 l , for l ,mv,

un1m,un1m8 ,un1 l ,un811, for l .mv,
~4.1!

for all n, to guarantee$un% and$un8% not to intersect through
any shift operation. These relations hold among all comp
ible configurations, even in the incommensurate case.

Using elementaryb and b8 to denote the phase param
eters respectively for$un% and $un8%, there must beb05b08
50 andb i2b i850 or 1/q, with the value 1/q taken at least
once for 1< i<d21. Two phase parameters related in su
a way are said to be related by an elementary phase s
The physical picture is that, to transform the configurati
$un% to $un8%, one in every period ofq atoms must be moved
across one of theith type of tip from the left to the right for
thosei’s with b i2b i851/q. See Fig. 3 for an example.

Now we will construct a phase parameter to depict b
configurations. Letb i(g)[gb i1(12g)b i8 for every integer
i with some 0,g,1. One can derive the correspondin
b̃b(g)(x) and f v(g)(x). Consider the RO stable configura
tions depicted by un

r ,l(j)5 f v(g)
r ,l (nv1a) with j

[Frac@qa#. The configurations$un
r (j)% with 0<j,g, as

well as $un
l (j)% with 0,j<g, are the same as the one d

picted byb(1)5b. The configurations for all the otherj are

FIG. 3. An example of compatible configurations$un% ~solid
circles! and $un8% ~open circles!, with d52, v53/8, b156/8, and
b1855/8. By moving the atoms closet to the tip across it~illustrated
by the arrows in the figure!, corresponding to an elementary pha
shift, either of these two configurations is transformed to the ot
Compatible configurations are generated by elementary ph
shifts.
8-6
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the same as the one depicted byb(0)5b8. See Fig. 4 for an
example.

Such ab(g) can be decomposed into two disjoint no
empty subsets: one with elements in the form ofk/q and the
other, of (k1g)/q, with integerk. Within each subset, an
two elementsb i and b j observe the subcommensura
condition,36 defined by Frac@b i2b j #PSv . These two sub-
sets are called subcommensurate clusters.b(g), as well as
b̃b(g)(x) and f v(g)(x), will be termed composite.b andb8
are called the constitutional elementary phase paramete
b(g). Furthermore,Sv(g)5SvøSv8 . In V, b and b8 are
two points and the set ofb(g) with 0,g,1 forms a one
simplex ~a straight line! with b andb8 as its vertexes. This
b(g) is taken to depict a mixed phase, with the ratio of t
abundance of the two pure phasesb and b8 given by
g:(12g) because any associated physical quantity~e.g., the
energy function! with its value evaluated through an integr
tion overx, is attributed to these two pure phases with th
corresponding weights in such a ratio.

The extension to the case of more than two compat
stable configurations is straightforward. In fact, the relat
between$un% and $un8%, as discussed above, should be
spected by any two among all simultaneously compat
configurations. If there arel distinct RO stable configuration
compatible simultaneously, one can arrange their co
sponding elementary phase parametersbI 1, bI 2, . . . , andbI l

such that b i
I 12b i

I j5ki
I j /q for all 1< j < l and 0< i ,d,

whereki
I j are either zero or one withk0

I j50 for all j and 0

5ki
I 1<ki

I 2<•••<ki
I l<1 for each 0, i ,d. We useI j to de-

note the positive integers whose binary representation
k1

I jk2
I j
•••kd21

I j and it follows that 05I 1,I 2,•••,I l

,2d21. In this setting, it is clear thatbI j ’s are independen
vectors in ad-dimensional space so that 1< l<d. Define the
phase parameterb i(g)[(g12g0)b i

I 11(g22g1)b i
I 21•••

1(g l2g l 21)b i
I l for each i with g[$g050,g1,•••,g l

51%. One can derive the accompanyingb̃b(g)(x) and
f v(g)(x). Consider the RO configuration depicted b
un

r ,l(j)5 f v(g)
r ,l (a1nv) with j[Frac@qa#. The configura-

tions $un
r (j)% with g j 21<j,g j , as well as$un

l (j)% with
g j 21,j<g j are the same as the one depicted bybI j for

FIG. 4. The hull functions for the compatible configurations
Fig. 3. ~a! Is the hull function for$un%, ~b! is the hull function for
$un8%, and~c! is the composite hull function for both withg50.6.
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eachj. In the phase parameterb(g) there arel subcommen-
surate clusters, each having elements in the form ofk
1g j )/q with k integer. Equivalently, there arel constitu-
tional ~elementary! phase parametersbI 1, bI 2, . . . , andbI l,
for the compositeb(g). The invariant setSv(g) hasl distinct
minimal proper subsets~periodic cycles!. In addition, the set
of all theb(g) with admissibleg forms an (l 21) simplex in
V with these l constitutional phase parameters as its v
texes. The weight of the pure phase, depicted bybI j , in the
mixed phase, depicted byb(g), is given byg j2g j 21 for
eachj.

For the potential withd subwells in a period, there can b
at mostd subcommensurate clusters in a phase parameteb.
Thus there are at mostd compatible distinct RO stable con
figurations. The classification by the number of subcomm
surate clusters, from 1 tod, exhaustes all the possibilities fo
the phase parameters inV and we have successfully attache
the physical meaning to the phases~pure or mixed! associ-
ated withanybPV in order to be consistent for the value o
the physical quantities like the energy at such ab.

Now let us inspect the gap structure of a composite ph
parameter. The openings are classified intod types according
to the indexi in Dbi ~or b i). Each subcommensurate clust
carries a corresponding hole. In@0,1), gaps resulting from
the cluster containingb i are the discontinuities of the hu
function f v(g)(x), located atx5Frac@nv1b i # for all n. In-
side each of these gaps, there is an opening from every
ment in the very cluster. For the case withl subcommensu-
rate clusters, there arel holes andlq gaps inSv(g) . Here and
thereafter, the coalescence of opening of the same type in
commensurate case is understood and will not be addre
explicitly.

One can use theg j to characterize the hole and its accom
panying gaps~to avoid confusion, recall that the opening
are characterized by the indexi in Dbi or b i). In the descrip-
tion below, we will identifyg i with g j for j 5 i (mod l ). In
the interval@0,1), each gap of theg i type @associated with a
cluster with elements in the form of (k1g i)/q] contacts one
of the g i 21 type in the left and one of theg i 11 type in the
right. They come in orbits side by side. Thus the holes
arranged in a cyclic order according to the magnitude ofg i .
The connecting points, between gaps of the adjacent t
g i 21 andg i , also come in orbits and compose theSvI i for
0, i< l . Thesel distinct periodic cycles forml compatible
RRO stable configurations.

Now let us look into how the resonance among openin
of different types affects the gap structure. Forl 5d, each
gap contains a single type of opening. Assume that the g
from b i andb j are of adjacent types; i.e., they are of thegk
andgk11 types, respectively, for somek. Consider the pro-
cess to adjust the values of the elements ing ~ or b) con-
tinuously until Eq.~3.2! holds forb i andb j with some inte-
ger ni j ; i.e., the value ofgk112gk decreases to zero an
their corresponding openings become in resonance. Jus
fore the resonance happened, every gap consisting of
opening of theith type neighbors one consisting of the ope
ing of thejth type. All the pairs of such neighboring gaps a
their connecting points come in orbits and the latter form
8-7
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periodic cycle. After the resonance occurs, every pair of t
neighboring gaps coalesce into one and the periodic c
consisting of joint points of these two types of gaps dis
pears. The number of subcommensurate clusters is, acc
ingly, decreased by one. Withb i and b j bound together in
one cluster, one can continue the process of adjusting
values of the elements ing ~ or b) to make more gaps get i
resonance in a similar way. This process is the commensu
version of anl to (l 21)-hole transition.20 Vice versa, the
decomposition of one subcommensurate cluster of mult
elements into two, the reverse process, involves the split
of the corresponding hole and gaps, as well as the emerg
of a new periodic cycle between them. This is the comm
surate version of anl to (l 11)-hole transition. On the othe
hand, if the above process referring to the joining ofb i and
b j conducts in such a way that (b j2b i) continues to vary in
the same trend after getting in resonance, they will br
resonance again. After breaking resonance, every gap
sisting of the opening of theith type still neighbors one o
the jth type but their relative positions with respect to th
connecting points are interchanged.

To carry the above discussion for the compatible confi
rations in the commensurate case over to the incomme
rate case, difficulty will be encountered due to the absenc
a well-defined 1/q. The scrutiny throughg is no longer fea-
sible. Nevertheless, with the setSv still employed to classify
subcommensurate clusters andni j to determinethe ‘‘degree’’
of resonance between the gaps associated witht i and t j ~to
be more specific, the opening due tot i with width
d0Dbie

2unux at x5Frac@b i1nv# is merged with an opening
due to t j with width d0Dbie

2un1ni j ux), we will explicitly
show the existence of distinct compatible RO stable confi
rations and an invariant set with a gap structure of multi
holes.

In the incommensurate case an infinitely long atom
chain is taken into account, so theb i ’s, being the phase o
the atom closest to theith type of tips, are defined to b
limiting values of sequences and the setSv is dense in@0,1#.
The way to find out the phase parameter in order to depi
given incommensurate RO stable configuration is descri
in detail in Ref. 31. Here, let us see what new results w
come out in this limiting process.

For an incommensurate RO stable configuration cha
terized by the phase parameterb, one may not be able to find
the atom, closest to theith type of tips from above~below!
among all the atoms in an infinitely long chain, in a fini
spatial extent. However, one can always locate it atu0

r (u0
l )

by renumbering the atoms withun
r 5 f v

r (nv1b i) @un
l

5 f v
l (nv1b i)#.37 Once this is done, it is then impossible

pin down the atom closest to theith type of tips from below
~above! in the finite spatial extent of the configuration$un

r %
($un

l %).
More generally, for any 0< i , j ,d, let us introduce

nji (N) and2ni j (N) to be the integersn, respectively, mini-
mizing and maximizing Frac@nv1b i2b j # ~maximizing and
minimizing Frac@b j2b i2nv#) with 2N<n<N for some
positive integerN to simulate the effect due to cutoff in th
limiting process~driving N→`). In other words,unji (N)

r
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(unji (N)
l ) andu2ni j (N)

r (u2ni j (N)
l ) are, respectively, the atom

closest to thejth type of tips from above and from below i
$un

r % ($un
l %) for 2N<n<N. As N→`, Frac@nji (N)v# and

Frac@2ni j (N)v# converge tob j2b i . Two different cases,
according to whetherb j2b i is in Sv or not, will be scruti-
nized below.

If b j2b i¹Sv , both ni j (N) and nji (N) diverge asN
→`. e2uni j (N)ux and e2unji (N)ux go to zero asN→` and
openings of theith type and of thejth type are not in reso-
nance. In particular, if none of the other elements inb are
subcommensurate tob i , then inSv the gap at the left-hand
~right-hand! side of Frac@un

r # (Frac@un
l #) has the width

d0Dbie
2unux and there are infinitely many gaps of infinites

mal widths at its right-hand~left-hand! side. The configura-
tion $un% ($un

l %) is thusrecurrentand the closure ofSv(b i)
is a cantorus.

For the case withb j2b i5Frac@nji v#PSv , there are
again two possibilities. The first is whennji (N)5nji

(ni j (N)52nji ) for all N>unji u, while the value ofni j (N)
@nji (N)# diverges forN→`. That is, in$un

r % ($un
l %) the 0th

atom and thenji th atom are, respectively, the atoms clos
to the ith and to thejth types of tips from above~below!,
while the atom closest to thejth type of tips from below
~above! cannot be found in the finite spatial extent. InSv ,
the gap at the left-hand~right-hand! side of Frac@un

r #
(Frac@un

l #) contains two openings with widthsd0Dbie
2unux

and d0Dbje
2un1ni j ux. At the right-hand~left-hand! side of

Frac@un
r # (Frac@un

l #) are infinitely many gaps with infinitesi
mal widths; therefore,$un

r % and$un
l % are recurrent.

The other possibility is whenni j (N)52nji @nji (N)
5nji # for all N>unji u, while the value ofnji (N) @ni j (N)#
diverges forN→`. That is, in$un

r % ($un
l %) the 0th atom and

the nji th atom are, respectively, the atoms closest to theith
type of tips from above~below! and to thejth type of tips
from below~above!, while the atom closest to thejth type of
tips from above~below! cannot be found in the finite spatia
extent. InSv , the gap at the left-hand~right-hand! side of
Frac@un

r # (Frac@un
l #) contains an opening with width

d0Dbie
2unux and the gap at the right-hand~left-hand! side of

Frac@un
r # (Frac@un

l #) contains an opening with width
d0Dbje

2un1ni j ux. Therefore,$un
r % and$un

l % are not recurrent.
In this case,b j2b i would rather be identified with an ex
tended numberb1 (b2), denoting the~equivalent class of!
strictly increasing~decreasing! sequences with elements i
Sv and the limiting valueb[Frac@nji v#.

Now let us see how to employ extended numb
as elements of the phase parameter in the above exam
Let b, b8, and b9, respectively, denote
$b0 , . . . ,b j , . . . ,b i , . . . %, $b0 , . . . ,b j 21 ,b j8 ,b j 11 , . . . ,
b i , . . . %, and $b0 , . . . ,b j 21 ,b j9 ,b j 11 , . . . ,b i , . . . %,
where b j5b i1b, b j85b i1b1, b j95b i1b2, and b
5Frac@nji v#. Assume that none of the other elements inb
are subcommensurate tob i or b j . Useun

r 5 f v
r (nv1b i) and

un
l 5 f v

l (nv1b i) for the recurrent configurations as well a
vn5 f v8(nv1b i) and wn5 f v9

l (nv1b i) for the nonrecur-
rent ones. It is straightforward to show that
8-8
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EXACTLY SOLVED FRENKEL-KONTOROVA MODEL WITH . . . PHYSICAL REVIEW B 66, 184108 ~2002!
vn5 f v8~nv1b i !

5 f v~nv1b i !1d0Dbj (
m52`

`

e2umux

3$Int@~n1m!v2b1#

2Int@~n1m!v2b#%

5un
r 2d0Dbje

2un2nji ux ~4.2!

and

wn5 f v9
l

~nv1b i !

5 f v
l ~nv1b i !1d0Dbj (

m52`

`

e2umux

3$Int2@~n1m!v2b2#

2Int2@~n1m!v2b#%

5un
l 1d0Dbje

2un2nji ux. ~4.3!

The difference betweenb and b8 ~or b9) captures the es
sence of an elementary phase shift for the incommensu
case and these phase parameters indeed depict comp
configurations. In other words, the notion of extended nu
bers naturally comes out as the concept of elementary p
shifts is carried over from the commensurate case to the
commensurate case.

In particular, vn5un
l 1d0Dbie

2unux5un
r

2d0Dbje
2un2nji ux (wn5un

r 2d0Dbie
2unux5un

l

1d0Dbje
2un2nji ux). Consequently,vn (wn) is inside the gap

betweenun
r andun

l , and$vn% ($wn%) is RO and compatible
with $un

r % and $un
l %. Moreover, the orbits of$vn% and $wn%

are homoclinic to those of$un
r % and$un

l %. All of them are not
discernible to any prescribed accuracy asunu→`. To be
more specific, the difference between the configurations,
picted, respectively, byf v8(nv1a) @ f v9

l (nv1a# and by
f v(nv1a) @ f v

l (nv1a# with a not subcommensurate t
b i , is not discernible for any finiten. Namely, by choosing a
phase variablea not subcommensurate tob i , the discernible
part between the two configurations due to the differe
betweenb j8 (b j9) andb j is driven to the spatial infinity. To
bring the discernible part of the difference to the finite spa
extent in an infinitely long chain, an appropriate choice
the phase variablea is indispensable~in our example,a
2b iPSv).

Though the values of extended numbersb1, b2, and
their limit b are not discernible to any accuracy, they can
employed to denote distinct configurations. The openin
respectively, of thei th type andj th type, will be considered
to be about to break their resonance for both phase pa
etersb8 andb9.

The multiple-hole structure is discernible only as the re
nant openings are just about to split. Namely, one can
compose the elements in a subcommensurate cluster into
groups and, for every gap associated with this cluster,
the dividing point with the openings from one of the group
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the right-hand side and those from the other at the left-h
side. The set of these dividing points will form a new min
mal invariant setSv8 . The orbit composed of the dividing
points is not recurrent and the closure ofSv8 is not a can-
torus. However, the set of limiting points inSv8 is still in the
closure of the original invariant setSv , soSv8 is a Denjoy
set.38 This splitting process and its reverse, the coalesc
process, dictate the hole transition in the incommensu
case.

V. MINIMUM ENERGY CONFIGURATIONS

In the FK model under discussion, minimum energy co
figurations must be RO.39 Here, two approaches to determin
minimum energy and ground state configurations from
collection of all RO stable configurations will be devise
One is based on the investigation of the energy differen
resulting from some atomic movements conducted in a gi
RO stable configuration. The other is based on studying
directional derivatives of the energy function.

A. Elementary phase shifts

Consider a stable configuration$un%, accompanied with
the coding sequence$^n&%, given in Eq.~2.9!. Assuming that
^0&,^1&5 i 11, one can construct another formal config
ration $un8% with ^n& replaced by^n&85^n&2dn,1 in Eq.
~2.9!. Here,dn,m denotes the Kronecker delta function. Th
energy difference between$un8% and$un% is given by

H~$un8%!2H~$un%!

5(
n

H 1

2
~un82un218 !21

l

2
@un82b^n&1dn,1~bi 112bi !G2

2(
n

F1

2
~un2un21!21

l

2
~un2b^n& D 2

1l~hi2hi 11!

5lDbi S u12t i2
d0

2
Dbi D5lDbi S u182t i1

d0

2
Dbi D .

~5.1!

Note that H($un8%),H($un%) if u12t i,d0Dbi /2. In this
case,$un% cannot be a minimum energy configuration. W
deliberately called$un8% a formal configuration because
may happen thatt ^n&821,un8,t ^n&8 fails for somen5m;
namely,$un8% may not be stable. Sayt j 21,um8 ,t j for some
j Þ^m&8, the energy of$un8% is overestimated in Eq.~5.1! by
the amountl@V^m&8(um8 )2Vj (um8 )] becauseVj (u) should be
the one picked up to minimizeV(u) in Eq. ~2.1! for u
5um8 . On the other hand, ifum8 5t j for somej, then$un8% is
unstable. Under a small perturbation it will relax to one w
lower energy. Therefore, the statement, that$un% cannot be a
minimum energy configuration ifu12t i,d0Dbi /2, still
holds.

Vice versa, one can also consider the case that$un8% is
stable and$un% is a formal configuration resulting from mov
ing the atom positioned atu18 across the potential tipt i at its
8-9
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right-hand side. Eq.~5.1! gives H($un8%).H($un%) if u18
.t i2d0Dbi /2. As a result, we have the following theorem

Theorem 1.For the FK model with potential given by Eq
~2.1!, there cannot be any atom withind0Dbi /2 reach of the
ith tip for everyi in a minimum energy configuration.

Theorem 1 provides a necessary condition for minim
energy configurations. The region withind0Dbi /2 reach of
the ith tip for everyi is called the depletion region for mini
mum energy configurations. An example is shown in Fig.
where every depletion region is indeed inside a gap of
hull function for the minimum energy configuration.

It is interesting to note that fort i2t i 21,d0(bi 11
2bi 21)/2, no atom is allowed in theith type of subwells for
minimum energy configurations. In this case, it makes
difference whether in Eq.~2.1! all the ith type of potential
branches are removed or not as long as only minimum
ergy configurations are concerned. Sayt22t1,d0(b3
2b1)/2 ~as shown in Fig. 6!, let t8 be the tip supposed to b
between the first and the third potential branches, if
branch V2(u) is removed. One has (b32b1)t85Db1t1
1Db2t2 with t85(b11b3)/21(h32h1)/(b32b1). For
minimum energy configurations, no atoms are allow

FIG. 5. The potential withd52 and the hull function for the
minimum energy configuration withv550/89. Inside the dashe
lines are the depletion regions.

FIG. 6. A segment ofV(u) showing that the second type o
potential branches can be deleted without affecting the minim
energy configurations.
18410
,
e

o

n-

e

d

within d0(b32b1)/2 reach of the tip located att8, which is
more stringent than that proposed in theorem 1 since@ t8
1d0(b32b1)/2# 2(t21d0Db2/2)5 @Db1 /(b32b1)#@d0(b3
2b1)/22(t22t1)#.0 and @ t82d0(b32b1)/2#2(t1
2 d0Db1/2)5 @Db2 / (b3 2 b1)# @(t2 2 t1) 2 d0(b3 2 b1) /2#
,0. Hence, all the second type potential branches can
removed without affecting minimum energy configuration
This process can be regarded as the coalescence of the d
tion regions belonging to two adjacent tips and the subw
in-between is depleted. The coalescing process can be
plied repeatedly; namely, fort j2t i,d0(bj 112bi)/2 with j
. i 11, all thekth types of potential branches withj .k. i
can be removed without affecting minimum energy config
rations.

Now let us turn to ground state configurations and inv
tigate the commensurate case first. From theorem 5 in
39, only repetitious configurations need be considered.
v5p/q, an RRO stable configuration satisfiesum1nq
5 f v(x1nqv)5np1 f v(x)5np1um and b^n1q&5b^n&
1p. Given the coding sequence,$un% can be expressed as

un5d0 (
m51

q

b^m&xq~m2n!1
d0p@enx2e(q112n)x#

~ex21!~eqx21!
~5.2!

5d0 (
m51

q

b^n1m&xq~m!2
d0p@e(q11)x21#

~ex21!~eqx21!
, ~5.3!

where xq(n)[$exp(2lx)1exp@2(q2l)x#%/@12exp(2qx)#
with l[n(modq) for 0< l ,q. Note that Eq.~5.2! is valid
for 0<n<q11, while Eq.~5.3! is valid for arbitraryn. Such
a configuration is specified byq codes^1&<^2&<•••<^q&
<^1&1pd.

Assume that̂ q&2pd,^1&5 i 11, and consider anothe
repetitious configuration$un8% ~associated with the coding se
quence$^n&8%), constructed from$un% by moving the (nq
11)th atom, for everyn, to the neighboring subwell at its
left-hand side, i.e., from an (i 11)th type of subwell to the
neighboringith type of subwell. One can show that the e
ergy difference per period ofq atoms between$un8% and$un%
is given by

Hq~$^n&8%!2Hq~$^n&%!5lDbi S u12t i2
d0

2
DbixqD ,

~5.4!

wherexq[xq(0). Similarly, we have the following lemma
Lemma 2.For the FK model with potential given by Eq

~2.1!, there cannot be any atom withinxqd0Dbi /2 reach of
the ith tip for every i in a commensurate ground state co
figuration with winding numberp/q.

Theorem 1 is for minimum energy configurations a
lemma 2 is for ground state configurations. Taking the ir
tional numbers as the limits of rational numbers withq
→`, the same depletion regions as those for minimum
ergy configurations will be obtained for the incommensur
ground state.

To determine the commensurate ground state config
tion, one must compare the energy of a given RRO sta

m

8-10
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configuration with those of all the other RRO configuratio
with the same winding number. Let$^n&8% denote any other
repetitious configuration with the same winding number a
$un8% is specified by Eq.~5.3! with b^n& replaced byb^n&8 .
The energy difference per period ofq atoms between$^n&8%
and$^n&% is given by

DHq~$d^n&%![Hq~$^n&8%!2Hq~$^n&%!

52l (
n51

q

db^n&Fun2t ^n&8

1
d0

2 (
m51

q

db^m& xq~n2m!G
52l (

n51

q

db^n&S un1un8

2
2t ^n&8 D , ~5.5!

whered^n&[^n&82^n& anddb^n&[b^n&82b^n& . For a non-
zerod^n&, t ^n&8 denotes the position of the tip supposed to
between thê n&8th and the^n&th potential branches, if al
the in-between potential branches are removed, i.e.,h^n&
1(b^n&2t ^n&8 )2/25h^n&81(b^n&82t ^n&8 )2/2. While for a null
d^n&, the value oft ^n&8 is irrelevant.

For $^n&% specifying a ground state configuration$un%,
there must be

DHq~$d^n&%!>0 ~5.6!

for every $d^n&%. However, only a subclass of$d^n&%,
namely, the set of directional movements with alld^n&>0 or
all d^n&<0, need be considered, as will be shown below

For an arbitrary movement$d^n&%, one can introduce two
directional movements,$d^n&1% and $d^n&2%, defined by
d^n&15max(d^n&,0) and d^n&25min(d^n&,0) for every n.
They are accompanied with$db^n&

1 % and $db^n&
2 %, respec-

tively. It follows that

DHq~$d^n&%!5DHq~$d^n&1%!1DHq~$d^n&2%!

2ld0(
n51

q

(
m51

q

db^n&
1 db^m&

2 xq~n2m!,

~5.7!

where the last term on the right-hand side is definitely po
tive unless either$d^n&1% or $d^n&2% is null. If Eq. ~5.6!
fails for some$d^n&%, then it must fail for either$d^n&1% or
$d^n&2%. Thus only those$^n&8% having no intersections
with $^n&% needs be compared. Combined with the shift o
erations, only configurations compatible with$un% need be
considered. Recall that, in our model, the incommensu
case can be regarded as a limit of the commensurate cas
the derivation applies for the incommensurate case as w

Now assume that there are two degenerate ground
configurations~in the commensurate case, or minimum e
ergy configurations in the incommensurate case! with the
same winding number but not compatible~i.e., not related by
any elementary phase shift!, one can apply a certain shi
operation to make them intersect~i.e., to make the$d^n&%
18410
d

e

i-

-

te
, so
ll.
te

-

between them consisting of both positive and negative
ments!. From Eq.~5.7!, there must exist some other config
ration with the same winding number but having lower sy
tem energy, which contradicts the original assumption.
summarize these crucial results as follows.

Theorem 3.For the FK model with potential given by Eq
~2.1!, a given RO stable configuration, depicted by an
ementary phase parameterb, is a ground state if and only i
the differences in the system energy induced by all the
ementary phase shifts are non-negative.

Corollary 4. For the FK model with potential given by
Eq. ~2.1!, if there exist more than one distinct degenera
minimum energy configurations with the same winding nu
ber, these configurations must be compatible.

This corollary is deliberately stated in a way to be al
applicable for NRME configurations with discomme
surations.18

The above properties are closely related to the fundam
tal lemma in Ref. 39, which holds for quite general classes
FK models. The new ingredient in our case is that the cyc
ordering of atoms in RO stable configurations is faithfu
encoded in the coding sequences. With multiple codes
signed in each period of potential, extra parameters are
quired to characterize RO stable configurations in addition
the winding number, which provides the possibility for th
analytical investigation of multiple compatible RO stab
configurations. Therefore, we conjecture that these theor
should also hold, in some suitable form, for other FK mod
above TBA, where the hull functions for RO stable config
rations is not uniquely determined by the winding number~in
other words, when the winding number and the phase v
ablea is not sufficient to characterize an RO stable config
ration!.

Theorem 3 allows us to determine if an elementaryb
depicts a ground state configuration by checking the ene
differences induced by 2d22 distinct elementary phas
shifts only. Furthermore, Eq.~5.5! simplifies the determina-
tion to examining a set of inequality relations linear in t
atomic positions, each of which is nearest to a certain typ
tips from below or above. Hence, all we need are the val
of f v

r ,l(b i) for 0< i ,d. The relations in Eq.~5.5! amounts to
giving 2d22 restrictions for depletion regions.

In the commensurate case, the elementary phase shifts
be characterized byDbI5$05k0

I ,k1
I /q, . . . ,kd21

I /q%. For
0,I ,2d21, k1

I k2
I
•••kd21

I is the binary representation ofI.
For 22d21,I ,0, everyki

I is equal to2ki
uI u . The resultant

phase parameter isbI[b2DbI with b i
I5b i2ki

I /q for 0
, i ,d. 22d21,I ,2d21 can thus be employed to represe
2d22 distinct elementary phase shifts except for the n
one. For the case with some atomic fractionn i[b i2b i 21
50, those elementary phase shifts leading to somebI¹V
should be excluded.

Now let us see how to conduct these elementary ph
shifts in an RO stable configuration given byun

r 5 f v(nv)
with Frac@uni

r #5 f v(b i). Only the movement of atoms in

period ofq atoms is described and the corresponding mo
ments should also be conducted in all the other periods.
can choose to move theni th atom, for each 0< i ,d, across
8-11
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the tip at its left-hand side or not, resulting in 2d configura-
tions. However, the two, with either all or none of thed
atoms moved, are equivalent, up to the shift operation, to
original one. The remaining 2d22 choices correspond to th
2d22 distinct elementary phase shifts.

To carry the above discussions over to the incommen
rate case,Hq should be replaced byH, xq(n) by e2unux ~no
more resonance among the same type of tips!, the range of
the summations(1

q by (2`
` , and the other terms~e.g., the

elementary phase shift! by their corresponding ones define
in a limiting sense for the incommensurate case. Such
placement amounts to taking the whole chain of infinite
many atoms as within a single period~i.e., q→`). Some
comments for the incommensurate case will be made fur
on.

Consider the ground state characterized by an elemen
phase parameter (b iPSv[$Frac@nv#u`,n,`% for all 0
< i ,d). For the configuration given byun

r 5 f v(nv), each
of these 2d22 distinct elementary phase shifts compris
some of the movements of theni th atoms across the tips a
their left-hand side for 0< i ,d. The phase parameterb8 of
the resultant configuration is defined as follows. For the
atom staying in the original potential branchb i85b i

1 if the
movement of theni th atom across the tip is conducted, a
b i85b i , if not. On the other hand, for the 0th atom mov
across the 0th tipb i85b i if the movement of theni th atom
across the tip is conducted andb i85b i

2 , if not. Hereb1 and
b2 are the extended numbers with respect tov. The state-
ment, that distinct RO configurations that are not compat
cannot be degenerate with the ground state, remains
However, the elements ofb8 are decomposed into tw
groups, with the differences between any pair of eleme
belonging to different groups being extended numbers. Th
it turns out that, in the incommensurate case under cons
ation, at most one of the compatible configurations is rec
rent and all the others are, in fact, NRO configuratio
Hence, they should be termed, more precisely,degenerate
minimum energy configurations~as we did in corollary 4!.

In general, there may be multiple subcommensurate c
ters in the phase parameter to characterize the ground s
Consider a phase parameterb composed ofl subcommensu-
rate clusters withdi elements in theith cluster such thatd1
1d21•••1dl5d. Particularly, for b i and b j not in the
same cluster, the difference between them is assumed t
neither a number inSv nor an extended number, to assu
that the depicted configuration is recurrent. For the confi
ration given byun

r 5 f v(nv1b i), if the nji th atom is moved
across the (d Int@nji v#1 j )th tip, the displacement of the
nji th atom will be2d0Dbj , while that of the 0th atom will
be 2e2unji uxd0Dbj . If b j is not in the same cluster asb i ,
then the limiting value ofnji will diverge as the whole of the
infinitely long atomic chain is taken into account. In th
case, the 0th atom is indifferent to whether thenji th atom is
moved or not becausee2unji ux→0 and the atom closest to th
jth type of tips moves to infinity in this limit. Such behavio
explains the meaning of two types of openings not in re
nance in the incommensurate case. Consequently, we
only consider the elementary phase shifts cluster by clus
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The 2d22 inequality relations for the depletion regions,
the commensurate case, to be fulfilled in order to determ
if the b characterizes the ground state are now reduced
(k51

l (2dk22) inequality relations andl 21 equality rela-
tions. Each term under the summation overk comes from
one of the subcommensurate clusters. The 2dk22 elementary
phase shifts for thekth cluster come from the two choices
with each of thedk atoms corresponding to the elements
the very cluster moved across its corresponding tip or n
excluding the two with either none or all of thedk atoms
moved. The condition that each of the elementary ph
shifts must involve non-negative energy change gives on
the inequality relations.

An additional equality relation@in the form of Eq.~6.9!#
for each cluster arises from the case when all of thedk atoms
are moved in thekth cluster. Namely, the total energy of th
system must be the same forun

r 5 f v
r (nv1b i) and un

l

5 f v
l (nv1b i). Both configurations are depictable by th

same phase parameter and they must have the same ene
the given phase parameter defines the ground state. In
sense, the very phase parameter are thought of to deno
mixed phase. This equality relation will reduce the dime
sion of the domain of stability by one, to conform to th
Gibbs’ phase rule40 @some related discussion from anoth
aspect is given around Eq.~5.9!#. Since we can use the left
hand and right-hand side limits ofb i ~or any value subcom-
mensurate tob i), respectively, as the phase variables to d
pict these two configurations, we may as well think of the
as related by different choices of phase variables and r
the elementary phase shifts for thekth cluster only to the
2dk22 ones mentioned above.

The last ‘‘21’’ in ‘‘ l 21’’ equality relations is from the
redundant relation corresponding to the case where all of
d corresponding atoms are moved. Specifically, the abol
equalities are not all independent because the equality

(
i 50

d21

Dbi@ f v
l ~b i !1 f v

r ~b i !#52(
i 50

d21

Dbit i , ~5.8!

is guaranteed in the formulation for the hull function@in
particular, see Eq.~6.1!#. To be more precise, assign the clu
ter containingb050 to be thel th cluster. One can obtainl
21 independent equalities to equate the system energie
$ f v

l (b i1nv)% and$ f v
r (b i1nv)% for a certainb i in each of

the first l 21 clusters. Then the equivalence of the syst
energies of$ f v

l (nv)% and $ f v
r (nv)% will be assured by Eq.

~5.8!.

B. The energy function

The determination of ground state configurations throu
studying directional derivatives of the energy function h
been conducted in Refs. 16 and 17. However, without pr
erly introducing the notion of mixed phase and extend
numbers, the domain of stability is difficult, if not impos
sible, to scrutinize. Here we will put emphasis on the n
ingredients that we have built. Specifically, now we have
better grasp of the phase represented by a general phas
8-12
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EXACTLY SOLVED FRENKEL-KONTOROVA MODEL WITH . . . PHYSICAL REVIEW B 66, 184108 ~2002!
rameter so that the physical meaning of taking directio
derivatives in the phase parameter spaceV becomes clearer
It will turn out that all results, obtained from the notion o
elementary phase shifts, can, in principle, be achie
through studying the energy function.

For a givenv, the energy function, given in Eq.~3.10!, is
continuous and convex over the spaceV̄[$v% ^ V ~see Ap-
pendix A!. More specifically, the curvature of the energ
function is null almost everywhere~occupying the whole
measure!.41 The nontrivial cases happen in a dense set w
null measure, where either the commensurate condition~with
v rational! or some subcommensurate condition~e.g.,
Frac@nv1b i2b j #50 for certain 0< i , j ,d and 2`,n
,`) holds. For this case, the curvature at any point on
hyperplane, specified by the commensurate or subcomm
surate condition, along a direction transverse to the hy
plane becomes singular and positive.

In the commensurate case, a composite phase param
b(g) with two subcommensurate clusters is related to its t
constitutional phase parametersb8 and b9 by b i(g)5gb i8
1(12g)b i9 for a suitable 0,g,1 and every 0, i ,d. It is
obvious that C@v,b(g)#5gC(v,b8)1(12g)C(v,b9),
so the derivative of the energy function atb(g) along the
direction of varyingg is a constant and the curvature is nu

In the incommensurate case one can also regard the
ementary phase parameter to denote the pure phase, wh
the others can be thought of to denote mixed phases, in
sense given below. For a givenb composed of two subcom
mensurate clusters, one can keep the cluster containingb0
50 fixed and add a numberx to every element of the othe
cluster, withZ denoting the set of subscripts~i! of all its
elements (b i), to form a family of phase parametersb(x)
with b5b(0). The curvature of the energy function alon
the direction of varyingx at x50 is null since none of the
Frac@nv1b i2b j #50 is satisfied forb i and b j not in the
same cluster@see Eq.~A1!#. The two neighboring elementar
phase parameters to constituteb(x50) are not well defined.
More specifically, there arex1.0 andx2,0 in any neigh-
borhood of 0 such thatb(x1) and b(x2) are elementary.
Nevertheless, the domain of stability~in the space of poten
tial parameters! for b(x50) has the dimensionality lowere
by one, than that of an elementary phase parameter, bec
the null-curvature condition]2C@v,b(x)#/]x2ux5050 leads
to the equality

]x
1C@v,b~x!#ux50

[ lim
e→0,e.0

C@v,b~e!#2C@v,b~0!#

e

5 lim
e→0,e.0

l(
i PZ F~hi2hi 11!1

Dbi

2
~112b02bi2bi 11!

2
d0

2
Dbi (

n52`

`

e2unux (
j 50

d21

Dbj~ Int@nv
18410
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1b j2b i2ed j ¹Z#2Int@nv1b i2b j1ed j ¹Z# !G
5l(

i PZ
DbiF f v

r ~b i !2
d0

2 (
j PZ

Dbje
2uni j ux2t i G

5l(
i PZ

DbiF f v
l ~b i !1

d0

2 (
j PZ

Dbje
2uni j ux2t i G

5]x
2C@v,b~x!#ux50

[ lim
e→0,e.0

C@v,b~0!#2C@v,b~2e!#

e
. ~5.9!

As compared with the incommensurate version of Eq.~5.5!,
Eq. ~5.9! gives, in fact, the energy difference betwe
$ f v

r (b i1nv)% and $ f v
l (b i1nv)% for any i PZ. To deter-

mine the domain of stability forb(x50), two inequality
relations ]x

2C@v,b(x)#ux50<0 and ]x
1C@v,b(x)#ux50

>0, are now replaced by the equality]xC@v,b(x)#ux50
50. Note the resemblance to the case with potential co
posed of a single subwell in each period.12 In that case, the
energy functionC(v) is a function of the winding numbe
only. For rational v, one has ]v

1C(v).]v
2C(v) and

]v
2C(v)<s<]v

1C(v) defines the plateau in the phase d
gram forv vs s. One has]v

1C(v)5]v
2C(v) for v irratio-

nal and this equivalence condition defines a single poin
the phase diagram. Similarly, the equality Eq.~5.9! defines a
hyperplane in the space of potential parameters. In this se
the very compositeb consisting of two subcommensura
clusters is considered to denote a mixed phase with two p
components.

It is straightforward to extend the above consideration
the phase parameters withl subcommensurate clusters fo
any 0, l<d. One can addx1 , x2 , . . . , andxl 21 to each
cluster except the one containingb050. The curvature of
the energy function along any direction lying on the hyp
plane spanned by the respective axes of varyingx1 , x2 , . . . ,
andxl 21 at the point given byx15x25•••5xl 2150 is null,
which will give l 21 equalities to determine the correspon
ing domain of stability. This domain of stability has the d
mensionality lowered byl 21, than that of an elementar
phase parameter. Hence, it is thought of to denote a m
phase ofl distinct pure components with thesel 21 equali-
ties to assure that thesel distinct pure phases have the sam
system energy.

In general, for a givenv, only denumerable many point
in V denote pure phases. Since the curvature of the en
function is null almost everywhere, one only needs to co
pare the energy function of the pure phases~with positive-
definite curvature! to pick out the ground state configura
tion~s! for a given set of potential parameters. A mixed pha
can be the ground state only if certain fields~determined by
the potential parameters! conjugate to theb i ’s accidentally
match the derivatives of the energy function along the dir
tions with null curvature@such as Eq.~5.9!#.

Also due to the fact that the curvature of the energy fu
tion is positive-definite only at elementary phase paramet
8-13
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to determine if an elementary phase parameterb depicts the
ground state, only the directional derivatives directing to
neighboring pure phases need be investigated. In the c
mensurate case withv5p/q, the neighboring pure phase
are those withb i8 equal tob i11/q, b i , or b i21/q for 0
, i ,d. In the incommensurate case, the neighboring p
phases can be considered to be those differing with the o
nal one depicted byb by at most one atom moved acro
each type of tips. Hence, one only needs to replace the a
b i11/q and b i21/q, for the commensurate case, by e
tended numbersb i

1 andb i
2 .

From Eq. ~A1!, the ]2C/]b i]b j with iÞ j is negative
definite for any elementaryb. The cases withb i85b i

1 and
b j85b j

2 for some iÞ j should be excluded accordingly. I
fact, those excluded in this way are not even compatible w
b. As a result, the remaining 2(2d2121) directional deriva-
tives to be inspected turn out to correspond to the elemen
phase shifts, which is consistent with theorem 3.

The analysis of the commensurate case is straightforw
so we will only describe how the directional derivative
conducted for the incommensurate case. For an elemen
b, one has

]b i

1 C[ lim
e→0,e.0

C~b i1e!2C~b i !

e

5l~hi2hi 11!1
l

2
Dbi~112b02bi2bi 11!

2
ld0

2
Dbi (

n52`

`

e2unux (
j 50

d21

Dbj~ Int@nv

1b j1d j ,ie2b i2e#2Int@nv1b i2b j # !

5lDbiF f v
r ~b i !2

d0

2
Dbi2t i G

5lDbiF f v
r ~b i !1 f v8

r
~b i !

2
2t i G , ~5.10!

in comparison with

]b i

2 C[ lim
e→0,e.0

C~b i !2C~b i2e!

e

5l~hi2hi 11!1
l

2
Dbi~112b02bi2bi 11!

2
ld0

2
Dbi (

n52`

`

e2unux (
j 50

d21

Dbj~ Int@nv

1b j2d j ,ie2b i1e#2Int@nv1b i2b j # !

5lDbiF f v
l ~b i !1

d0

2
Dbi2t i G

5lDbiF f v
l ~b i !1 f v9

l
~b i !

2
2t i G , ~5.11!
18410
s
m-

e
i-

ve

h

ry

d,

ry

whereb8 and b9 are almost the same asb exceptb i85b i
1

and b i95b i
2 . All the elements inv, exceptb i , are kept

fixed in taking the directional derivative. The above tw
equations respectively, give the energy needed to move
atom closest to theith type of tips from above, of$un
5 f v(nv)%, to its left neighboring subwell and the energ
needed to move the atom closest to theith type of tips from
below, of $un

l 5 f v
l (nv)%, to its right neighboring subwell

They are special cases of Eq.~5.1! for RO stable configura-
tions.

In this way, one can build up a one-to-one corresponde
between the elementary phase shifts and the directional
rivatives of the energy function, evaluated at a certain
ementary phase parameter and directing to a compatible
Thus the same results, as those derived from studying
elementary phase shifts, are also obtainable from study
these directional derivatives, once the physical meaning
the phases associated with all phase parameters inV is clari-
fied and the notion of extended numbers is appropria
employed.

VI. THE PHASE DIAGRAM

In determining the ground state configuration, one c
regard b as dependent variables while b
[(b1 ,b2 , . . . ,bd21) and h[(h1 ,h2 , . . . ,hd21) as inde-
pendent variables, andv as a controlling parameter for
fixed l.0. In fact, any faithful transformations can be co
ducted on those independent variables. For example, one
choose the set Db[(Db1 ,Db2 , . . . ,Dbd21) and t
[(t1 ,t2 , . . . ,td21) instead, with Db0512Db12Db2
2•••2Dbd21 and t050 implied. The transformations ca
be conducted through Eqs.~2.4! and ~2.7!. In terms of this
new choice, Eq.~3.3! can be recast as

f v~x!5
1

2
1 (

i 50

d21

DbiS t i1d0 (
n52`

`

e2unuxInt@x1nv2b i # D .

~6.1!

Db and t will be promoted, in preference tob andh, as the
independent variables because the formulation of Eq.~5.6! is
simpler in terms of the former. The boundary ofT, i.e., the
region inT with t i5t i 11 for somei, will be denoted by]T.

To minimize the system energy, onlyd21 dependent
variablesb are to be determined for a given point in a (2d
22)-dimensional space (Db% t). In the following, we
would like to regardt as independent variables andDb as
parameters. This choice is just for convenience~as we have
seen, the relations to determine the domain of stability can
expressed as linear relations int i ’s; in addition,b and t can
sort of be regarded as conjugate variables!. Our goal is to
study the domain of stabilityD@b#, i.e., the set oft in T, in
which the configurations depicted by the givenb have the
lowest energy~either a ground state or a minimum ener
configuration!, for a given set ofv andDb. As we shall see,
any point inT is generically~with probability 1! locked in
someD@b# with theb containing a single subcommensura
cluster.
8-14
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EXACTLY SOLVED FRENKEL-KONTOROVA MODEL WITH . . . PHYSICAL REVIEW B 66, 184108 ~2002!
A. The domain of stability

Now let us find out the~Lebesque’s! dimensionality of the
domain of stability for a given phase parameter inV. Con-
sider the commensurate case with winding numberp/q at
first. For an elementaryb and a givenDb, one can derive the
relation

f v
r ,l~b i !5 f v

c ~b i !6
d0

2 (
j 50

d21

Dbjxq~ni2nj ! ~6.2!

with f v
c (b i)[@ f v

r (b i)1 f v
l (b i)#/2 for later use.

The domainD@b# is closed, in the sense that it contai
all its boundary points, because the inequality in Eq.~5.6! is
not strict~distinct degenerate ground state configurations
thus allowed!. In addition, the union of allD@b# with el-
ementaryb’s is the wholeT. As a result, the boundary o
each D@b# with an elementaryb is composed of piece
given either by]TùD@b# or by D@bI #ùD@b# for some 1
<uI u<2d21 to specify the elementary phase shift.

The energy difference per period ofq atoms induced by
an elementary phase shift specified by a nonzeroI is, from
Eq. ~5.5!, given by

DHq
I ~b!uDb52l (

i 51

d21

ki
IDbiF f̂ v~b i !uDb1 f̂ vI~b i !uDb

2
2t i G

52l (
i 51

d21

ki
IDbiF f̂ v~b i !uDb

1
d0

2 (
j 51

d21

kj
IDbjxq~ni2nj !2t i G , ~6.3!

where the hull functionf̂ [ f r for I ,0 and f̂ [ f l for I .0.
The condition DHq

I (b)uDb50 specifies a
(d22)-dimensional hyperplane inT.42 In this hyperplane,
Hq(b)5Hq(bI). On one side of it,Hq(b).Hq(bI) while,
on the other side,Hq(b),Hq(bI). Consequently, their inter
sectionD@b#ùD@bI # is contained in this hyperplane an
plays as the boundary betweenD@b# andD@bI #.

Define t̄(b)[$ t̄ 1 , t̄ 2 , . . . ,t̄ d21%, with t5 t̄(b) to be the
solution of t i[ f v

c (b i) for 1< i<d21. From the fact that

Eq. ~6.3! is continuous int, one knows thatt̄(b) is inside
D@b# ~not a boundary point! for an elementaryb with all
n i.0 because f vI

r (b i). f v
l (b i) for I ,0 and f vI

l (b i)
, f v

r (b i) for I .0. Hence, D@b# occupies a finite
(d21)-dimensional Lebesgue measure inT. This domain is
bounded by the hyperplanesDHq

I (b)50 for 2d22 distinct
elementary phase shiftsI and is, therefore, a convex hype
polygon. Such a domain is called ad21 domain.

For an elementaryb with some atomic fractionn i50,
one hast̄ i5 t̄ i 21 and, therefore,t̄(b)P]T. Such aD@b# still
extends to the bulk ofT since a subwell with sufficiently
small t i2t i 21 is allowed, which will be depleted as sug
gested in lemma 2. ThisD@b# is still a convex hyperpoly-
gon, bounded by]T and DHq

I (b)50 for the elementary
phase shiftsI leading tobIPV, and is still ad21 domain.
18410
re

The intersectionD@b#ùD@bI # for a certain I is con-
strained in a (d22)-dimensional hyperplane, given b
DHq

I (b)52DHq
2I(bI)50, and accordingly occupies a nu

(d21)-dimensional Lebesgue measure inT, but occupies a
finite (d22)-dimensional Lebesgue measure on the hyp
plane. Such a domain is called ad22 domain. In general, if
the intersection ofl distinctd21 domains is not empty, thes
l elementary phase parameters must becompatibleand there
is a unique way to arrange them as$bI 1,bI 2, . . . ,bI l% with
05I 1,I 2,•••,I l,2d21. Their intersection occupies a fi
nite Lebesgue measure on a (d2 l )-dimensional hyperplane
given by relationsDHq

I j(b)50 for 1, j < l , and is thus ad
2 l domain.

Next, let us turn to the case with a composite phase
rameter, which can be decomposed intol nonempty subcom-
mensurate clusters for some 1< l<d. One can arrange itsl
constitutional phase parameters as$bI 1,bI 2, . . . ,bI l% with
05I 1,I 2,•••,I l,2d21 and a certaing, so that the com-
posite elementary parameter can be denoted byb(g). In
D@b(g)#, every constitutional phase parameter can be u
to depict a ground state configuration, so thatD@b(g)#
5D@bI 1#ùD@bI 2#ù•••ùD@bI l#. In fact, for all theb(g8)
inside the (l 21) simplex ofV with the constitutional phase
parameters ofb(g) as its vertices,D@b(g8)# coincides with
D@b(g)#. Such results conform to the Gibb’s phase rule
consider the compositeb(g) to denote a mixed phase com
posed ofl distinct pure phases. For there to be one m
coexistent pure phase~in our case, one more constitution
elementary phase parameter to represent an additional
phase!, an additional equality must be imposed on the se
field variables~in our case, the degree of freedom for th
domain of stability in the phase diagram is decreased by!.

Particularly, the set of all the points inT, allowing com-
posite phase parameters to depict ground state configura
is a union of denumerable many sets with n
(d21)-dimensional Lebesgue measure. Accordingly, an
bitrarily chosen point inT is generically~with probability 1!
inside somed21 domain specified by a single elementa
phase parameter. The other cases happen only acciden
~with probability 0!. As a result, the allowable phase param
eter to depict ground state configurations is generica
locked into an elementary one, which meets all the subco
mensurate conditions.

In the incommensurate case,xq(n) should be replaced by
e2unux to take away the resonance among openings of
same type. Even with such a replacement conducted u
Eq. ~6.2!, it is obvious that the pointt̄(b), with t5 t̄(b) to be
the solution of t i[ f v

c (b i) for 1< i<d21, is still inside
D@b# for every elementaryb. Most features ofD@b# with
an elementaryb, derived from Eq.~6.3!, for the commensu-
rate case can thus be carried over to the incommensu
case.D@b# is still a d21 domain for an elementaryb. The
elementary phase shift withki

I51 (ki
I521) will take b i to

b i
2 (b i

1), and the subcommensurate cluster in the resul
bI is about to break into two groups. We shall useDHI(b) to
denote the energy required to conduct such a phase s
Thus DHI(b)50 gives the hyperplane, overlapping part
the boundary ofD@b#.
8-15
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SHIH-CHANG LEE AND WEN-JER TZENG PHYSICAL REVIEW B66, 184108 ~2002!
As we learned in the last section, thisbI does not depict a
recurrent configuration. One must be careful in counting
dimensionality of the domainD@bI #. Here we describe the
case withI ,0 and the other case can be treated simila
Consider the configuration un5 f v(nv) with b i

5Frac@niv# for 0, i ,d. Moving t beyond the boundary o
D@b#, given by DHI(b)50, will make DHI(b),0. That
is, at this t, moving all theni th atoms withki

I,0, respec-
tively, to their left neighboring subwells~called the operation
I ), resulting in the configuration$un8%, will reduce system
energy. However, we shall show below that$un8% is not the
minimum energy configuration.

Since$un% is recurrent, one can always find some integ
MÞ0 such that Frac@uni1M2t i # are close to Frac@uni

2t i #

within any prescribed accuracy for every 0< i ,d. Thus no
matter how close the givent is to the hyperplane specified b
DHI(b)50, the integerMÞ0 can always be found suc
that moving all the (ni1M )th atoms withki

I,0, respec-
tively, to their left neighboring subwells~regarded as con
ducting the operationI in another part of$un% shifted byM )
will reduce the energy of$un%. From the fact that Frac@un8#
should be inside the gap at the left-hand side of Frac@un# in
the invariant setSv for all n, we have Frac@uni

2t i #

,Frac@uni1M8 2t i #,Frac@uni1M2t i #. As a result, moving

all the (ni1M )th atoms withki
I,0, in $un8%, respectively, to

their left neighboring subwells~i.e., conducting the operatio
I in the part of$un% shifted byM after the operationI in the
part of $un% shifted byM50 has been conducted! will still
reduce the system energy at the givent. That is to say,$un8%
is no longer a minimum energy configuration ast is moved
beyond the the hyperplane specified byDHI(b)50. We thus
come to the conclusion thatD@bI # is restricted to the (d
22)-dimensional hyperplane given byDHI(b)50 and is a
d22 domain coincident with part of the boundary ofD@b#.
In words, for any given atomic segment of any finite leng
in $un%, one can always find infinitely many segments
atoms that are close to the given one~after the shifts by
integers! within any prescribed precision because$un% is re-
current. Thus the fact that conducting the operationI,
thought of as adding a defect, in some place of$un% will
reduce the system energy implies that adding such defec
infinitely many suitable places of this atomic chain can s
reduce the system energy. As a result, the NRO configura
$un8%, with a single defect, cannot be the minimum ener
configuration.

Crossing the boundaryD@bI # of the elementaryD@b#,
infinitely many d22 domains with infinitesimal thicknes
along the direction orthogonal to the hyperplane given
DHI(b)50 will be encountered. Thesed22 domains are
associated with phase parameters composed of two sub
mensurate clusters, corresponding to the two groups w
their resonance broken by the elementary phase shiftI.

With the applications of different kinds of elementa
phase shifts, one by one, on an elementary phase param
the subcommensurate cluster can be decomposed intol non-
empty groups for some 1, l<d. Each step produces a ne
NRO configuration compatible to the background RRO o
18410
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and all the resultant NRO configurations are compatible w
one another. The domain of stability for the resultant ph
parameter is restricted to a (d2 l )-dimensional hyperplane
and is ad2 l domain on the boundary ofD@b#.

B. The geometry of domains

Here, we would like to recognize the shape of the dom
of stability from the interaction~splitting or merging! among
different types of openings. In the commensurate case
arbitrarily chosenb in V generically~with probability 1! has
d subcommensurate clusters and can be expressed by ab(g)
with 05g0,g1,•••,gd51. We shall show that in this
case the domain of stabilityD@b# is a single point.

Consider the configuration$un
r ,l(j)%, associated with a

coding sequence$^nr ,l(j)&%, defined by

un
r ,l~j![ f v

r ,l S j

q
1nv D ~6.4!

with 0<j,1. For eachj with 0, j ,d, $^nr(g j )&% and
$^nl(g j )&% differ only by one code in their correspondingq
consecutive codes. InD@b#, these two configuration
$un

r (g j )% and $un
l (g j )%, are degenerate. An equality, in th

form of

t j5 f v
c ~b j !, ~6.5!

is thus imposed ontPD@b# from lemma 2 becausef v
r (b j )

2 f v
l (b j ) is exactly equal to the width of the depletion regio

associated with the tipt j . As j is increased from 0 to 1,d
distinct minimal periodic cycles are explored and the po
tions ofd21 tips are uniquely determined@recall the redun-
dant relation due to Eq.~5.8!# with the solution oft denoted
by t̄ ~therefore, theorem 1 and lemma 2 are also suffici
conditions if no resonance occurs among gaps!. Since the
right-hand side of Eq.~6.5! is still dependent ont from Eq.
~6.1!, we would rather choose another set of coordinate s
tem t* [$t1* ,t2* , . . . ,td21* % to describe the points inT,
which is related tot through the linear transformation

t i* 5t i2b05t i1
1

2
2 (

j 51

d21

Dbj t j , ~6.6!

for 0, i ,d. Now the phase spaceT is constrained, in the
coordinate t* , by 1/22( j 51

d21Dbj t j[t0* <t1* <•••<td21*
<td* [11t0* . Particularly, the coordinatest andt* are faith-
fully ~with a constant non-zero JacobianDb0) linearly re-
lated and thus the reference to the geometry~shape! of a
domain is the same for both coordinate systems. We a
introduce

t̄ i* [ t̄ i2b05 f v
c ~b i !2b0 ~6.7!

for 0, i ,d, which is a function ofDb andb but indepen-
dent of t or t* , from Eqs.~2.7! and ~6.1!. Hence, Eq.~6.5!
can be written as

t i* 5 t̄ i* ~0, i ,d!, ~6.8!
8-16
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EXACTLY SOLVED FRENKEL-KONTOROVA MODEL WITH . . . PHYSICAL REVIEW B 66, 184108 ~2002!
which specifies a single point inT. As a result,D@b# is a
single point inT.

Turn to the case that one of the subcommensurate clu
with elements in the form of (k1g j )/q with integer k,
contains multiple elements, say, m elements
$b18 ,b28 , . . . ,bm8%. As j is increased from belowg j to
aboveg j , m atoms in each period ofq atoms should be
moved across their corresponding tips,together. Namely, in-
side such aD@b#, only thesem atoms all or none moved
across corresponding tips are allowed for ground state c
figurations. In this case,m openings, corresponding to them
elements in the very cluster, coalesce to form a single g
The previousm separate conditions in the form of Eq.~6.8!
are now replaced by a single oneHq@$^nr(g j )&%#
5Hq@$^nl(g j )&%# or, from Eq.~5.5!,

(
i 51

m

Dbi 8t i 8
* 5(

i 51

m

Dbi 8 t̄ i 8
* , ~6.9!

where the term at the right-hand side is independent oft* . In
the (t18

* ,t28
* , . . . ,tm8

* ) space ~a m8-dimensional projected
subspace ofT ), a single point, previously specified bym
equations in the form of Eq.~6.8!, is now replaced by an
m21 dimensional hyperplane, specified by Eq.~6.9!. This
reveals how the resonance~subcommensurate condition! dic-
tates the domain of stability.

Specifically, consider a subcommensurate cluster cont
ing two elementsb i andb j . The domain of stability in the
(t i* ,t j* ) subspace~a projected 2 dimensional space inT ) is

now given by, instead oft i* 5 t̄ i* and t j* 5 t̄ j* , a single rela-
tion

Dbi~ t i* 2 t̄ i* !1Dbj~ t j* 2 t̄ j* !50, ~6.10!

with the constraint~see afterwards!,

Dbi ut i* 2 t̄ i* u<di j ~or Dbj ut j* 2 t̄ j* u<dji ! ~6.11!

where di j [d0xq(ni j )DbiDbj /2. It describes a straight line
segment with endpoints (t i* ,t j* ) given by t i , j* [( t̄ i*

2di j /Dbi , t̄ j* 1dji /Dbj ) and t j ,i* [( t̄ i* 1di j /Dbi , t̄ j*
2dji /Dbj ). In the interior of this line segment, the pha
parameter for the ground state must have openings ofith and
jth types in resonance. At the endpointt i , j* , these two types
of openings are allowed to break resonance with opening
the ith type on the left and those of thejth type on the right,
whereas the other way around for the endpointt j ,i* . Beyond
the endpoints, along the line given by Eq.~6.10!, are the
domains withb i andb j subcommensurate with other valu
of ni j .

Let us come back to the constraint. Consider the confi
ration depicted byun5 f v(nv1b j ). n50 andn5ni j desig-
nate the atoms respectively closest to thejth and theith types
of tips from above. Eq.~6.10! amounts to the statement th
simultaneous moving the 0th and theni j th atoms, respec
tively, across the tips at their left-hand side does not c
energy, while the two relations in Eq.~6.11! amount to the
statement that moving either one of the two atoms across
corresponding tip cost energy. The latter two relations co
18410
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spond to the elementary phase shifts allowed to be condu
on the very subcommensurate cluster. In general, for ther
be k elements in a subcommensurate cluster, there will
2k22 relations, in the form of Eq.~6.11!, and one equality,
in the form of Eq.~6.10!, to equalize the energies of$un

r % and
$un

l % @recall the redundant relation in Eq.~5.8!#.
For a subcommensurate cluster composed of three

ments b i , b j , and bk , the domain of stability in the
(t i* ,t j* ,tk* ) subspace is given by

Dbi~ t i* 2 t̄ i* !1Dbj~ t j* 2 t̄ j* !1Dbk~ tk* 2 t̄ k* !50,
~6.12!

with the constraint

Dbi ut i* 2 t̄ i* u<di j 1dik ~6.13!

and the other two combinatorial partners~over i, j, andk).
These six conditions~each equation contains two relation!
are equivalent to

uDbi~ t i* 2 t̄ i* !1Dbj~ t j* 2 t̄ j* !u<dik1djk , ~6.14!

and the other two combinatorial partners. The set of po
conforming to the above constraint forms a hexagon in
plane, given by Eq.~6.12!, as shown in Fig. 7. The coordi
nates of the six vertices (t i* ,t j* ,tk* ) are, respectively,

given by t i , j ,k* [( t̄ i* 2di j /Dbi2dik /Dbi , t̄ j* 1dji /Dbj

2djk /Dbj , t̄ k* 1dki /Dbk1dk j /Dbk) and the other five per-
mutation partners (t j ,k,i* , tk,i , j* , tk, j ,i* , t i ,k, j* , andt j ,i ,k* ). Inside
the hexagon, the phase parameters for the ground state
have openings of theith, jth, andkth types in resonance. O
the line segment betweent i , j ,k* and t i ,k, j* , the resonant open
ings are allowed to split into two groups, with opening of t
ith type on the left and the resonant openings ofjth andkth
on the right. Right at the vertext i , j ,k* , the resonant opening
are allowed to split into three, with openings of theith, jth,
andkth types arranged from left to right.

FIG. 7. The domain of stability withb i , b j , andbk subcom-
mensurate on the plane, given by Eq.~6.12!, in the (t i* ,t j* ,tk* )

subspace. The point (t̄ i* , t̄ j* , t̄ k* ) is at the center of the domain.
8-17
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For a subcommensurate cluster composed of four
mentsb i , b j , bk , and b l , the domain of stability in the
(t i* ,t j* ,tk* ,t l* ) subspace is given by

Dbi~ t i* 2 t̄ i* !1Dbj~ t j* 2 t̄ j* !1Dbk~ tk* 2 t̄ k* !1Dbl~ t l* 2 t̄ l* !

50. ~6.15!

With appropriate constraint, it gives rise to a thre
dimensional polyhedron ~see Fig. 8! with 24
vertices (t i* ,t j* ,tk* ,t l* ), respectively, given by t i , j ,k,l*

5 ( t̄ i* 2 di j / Dbi 2 dik / Dbi 2 dil /Dbi , t̄ j* 1 dji / Dbj 2 djk /

Dbjdjl / Dbj , t̄ k* 1dki / Dbk 1 dk j / Dbk 2 dkl / Dbk , t̄ l* 1 dli /
Dbl1dl j /Dbl1dlk /Dbl) and its 23 permutation partner
~over i, j, k, andl ). It has eight faces with six vertices and s
faces with four vertices. There are 2422514 faces in total.
The eight faces is similar to that shown in Fig. 7 and each
them has vertices such ast$ i , j ,k%,l* or t l ,$ i , j ,k%* , where the
$ i , j ,k% in the subscript means that the six vertices are sp
fied by the six permutations overi, j, k. Specifically, the face
given by t$ i , j ,k%,l* is on the plane given byt l* 5 t̄ l1(dli 1dl j

1dlk)/Dbl in the three-dimensional hyperplane given by E
~6.15!. It amounts to a direct product of a point in thet l*
subspace and a hexagon in the (t i* ,t j* ,tk* ) subspace. In this
face, the resonant opening are allowed to split into t
groups, the resonant opening of theith, jth, andkth types on
the left and that of thel th type on the right. One can continu
to analyze the boundaries of the very face~e.g., line seg-
ments or vertices! in the same way as the above case fo
subcommensurate cluster with three elements. The othe
faces are direct products of two line segments. One of th
has vertices given byt$ i , j %,$k,l %* . It is on the plane given by

Dbi(t i* 2 t̄ i* )1Dbj (t j* 2 t̄ j* )52dik2dil 2djk2djl and
amounts to the direct product of a line segment fromt i , j ,k,l* to
t j ,i ,k,l* in the (t i* ,t j* ) subspace and the other fromt i , j ,k,l* to

FIG. 8. The domain of stability with four elements ofb sub-
commensurate on the three-dimensional hyperplane, given by
~6.15!, in the (t i* ,t j* ,tk* ,t l* ) subspace.
18410
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t i , j ,l ,k* in the (tk* ,t l* ) subspace. Again, the resonant openin
are allowed to break into two groups, each with two types
openings, in this face.

The domain of stabilityD@b# in T is a direct product of
convex hyperpolygons, each corresponding to a subcomm
surate cluster and being constructed in the way descr
above, with the parts outsideT, if any, truncated.43 Descrip-
tions of the hyperpolygon for a general subcommensu
cluster and of the surroundings for a given domain of sta
ity are given in Appendix B.

Next, turn to the incommensurate case. In every subc
mensurate cluster of a general phase parameter inV, the
domain of stability in the corresponding projected subsp
in T is determined by relations similar to Eqs.~6.10! and
~6.11!. Hence, the subcommensurate clusters dictate the
mains of stability in the same way as in the commensur
case. That is, using the description of resonance betw
openings in counting the dimensionality and determining
shape of the domains of stability can be carried over from
commensurate case to the incommensurate case. How
there is still one important different feature, as we shall d
scribe below.

The domain of stability for a phase parameterb with l
(.1) subcommensurate clusters has the same shape a
in the commensurate case and is ad2 l domain. Recall that
though the veryb represents a mixed phase, its consti
tional pure phases are not well defined~can only be defined
as limits!. Thus it is not on the boundary of anyd2 l 11
domain. On the other hand, the boundary ofD@b# is com-
posed of the hyperplanes (d2 l 21 domains! which are do-
mains of the stability for the phase parameters, result
from conducting elementary phase shifts on a certain s
commensurate cluster ofb and denoting NRO configura
tions. Crossing the boundary~along the direction to tear the
subcommensurate cluster into two!, layers of infinitely many
d2 l 21 domains~with infinitesimal thickness! will be met,
just as in the case at the endpoint of the plateau in the de
staircase.

The number of all the elementary phase parameters in
incommensurate case is infinite but still denumerable,
the set of all the corresponding 0 simplexes is dense~having
a d21 fractal dimension! in V but has a nulln dimensional
Lebesgue measure for any 1<n<d21. Nevertheless, thei
domains of stability ared21 domains and the union of a
these domains occupy the whole measure ofT. On the con-
trary, though the phase parameters with multiple subco
mensurate clusters occupy the whole measure inV, they
have null curvature in one or another direction. Thus th
have null Jacobians for the mapping fromV to T. Conse-
quently, an arbitrary chosent is generically~with probability
1! inside somed21 domain with the corresponding phas
parameter elementary. We then propose that the phase
gram is acomplete(d21)-dimensional devil’s staircase.

VII. INCOMMENSURATE NONRECURRENT MINIMUM
ENERGY CONFIGURATION

The existence of incommensurate NRME configuratio
was first proposed in Ref. 14. Here, we would like to sho

q.
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how they can be implemented in the general case. Cons
the FK model with potential given by Eq.~2.1! having an
incommensurate ground state configurations with wind
numberv and phase parameterb. Assumeh2 is so high that
t1 and t2 are close enough to make the second type
subwells depleted by the coalescence of depletion reg
~see Fig. 9!. Then, one hasb15b2 with f v

l (b1),t1<t2

, f v
r (b1) to depict the ground state configuration. That is

say,b2 andb1 are subcommensurate withn2150. Now let
us see what happens ash2 is decreased.

As h2 is varied, t1 and t2 vary accordingly. DefineDb
5b32b1 andt to be the tip, supposed to be between the fi
and third potential branches if the second branch is
glected. Forh2 decreased gradually from a sufficiently larg
value, the second potential branch becomes observablet
5t15t2. However, according to theorem 1, the minimu
energy configuration~including ground state! is not affected
until h2 reaches the valueh2

c such that eithert25 f v(b1)
2d0Db2/2 or t15 f v

l (b1)1d0Db1/2 is satisfied, which oc-
curs at

h2
c5h32lDb2F f v~b1!2

d0

2
Db22

1

2
~b21b3!G ~7.1!

or

h2
c5h11lDb1F f v

l ~b1!1
d0

2
Db12

1

2
~b11b2!G , ~7.2!

respectively. These two cases happen simultaneous
whenb1 andb2 are not subcommensurate to any other e
ments inb. Now we will describe the case when Eq.~7.1! is
reached first and the other case can be treated similarly.

As Eq. ~7.1! is reached, the ground state configuration
this point is still depicted byun5 f v(nv1b1) and the
NRME configuration, given byun85un2d0Db2e2un2n1ux,
emerges. There are two facts to demonstrate that$un8% is
nonrecurrent. The zeroth atom is the only atom sitting at
second type of subwells. In addition, the limiting value

FIG. 9. The variation of the potential ash2 is lowered.t1 is
denoted by the solid circles andt2, by the open circles. An NRME
configuration is allowed ath25h2

c .
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n218 ~taking the limit of an infinitely long chain for the incom
mensurate case31! diverges but the limiting value o
Frac@n218 v# is still 0. In this case, we identifyb28 with b1

1 ~an
extended number!, to reveal the fact that the openings of th
first and second types are about to break their resonanc

As h2 is lowered further, the configurations continue
from $un8% or $un% are no longer minimum energy configura
tions, since moving certain~in fact, infinitely many! atoms
from the third types of subwells into the second type
subwells will lower the system energy. There must be a fin
fraction of the infinite many atoms in this atomic cha
moved across the second types of tips from above in orde
achieve a ground state configuration again. Therefore,
may well say that the defects produced by the elemen
phase shifts mediate the subcommensura
subincommensurate phase transition relating tob1 and b2,
which differentiates the fraction (b22b1) of atoms in the
second type of subwells, for the ground state configurat
to be locked inSv or not.

The above implementation can be regarded as to break
resonance~with n2150) betweenb1 andb2. It can be easily
generalized to the case for anyb i andb j with ni j finite, as
described in Appendix C. The shift ofh2 amounts to moving
t from a d2 l domain to its boundary, ad2 l 21 domain.
Such implementation can also be generalized to break
resonance between two groups of elements in a subcomm
surate cluster. This is indeed what occurs at the transi
point for anl to (l 11)-hole transition.15

One can imagine how to use different elementary ph
shifts to implement more compatible NRO configurati
from an RRO background, and these NRO configurations
allowed to become NRME ones ast is driven to appropriate
place~in a d2 l 2k domain on the boundary of ad2 l do-
main if k distinct NRME configurations are allowed!. That is
to say, any NRO stable configuration can be made to be
NRME configuration by choosing an appropriate set oft.
Therefore, the properties of the NRO configurations can
carried over to the NRME configurations. In particular, t
NRME configuration is homoclinic to its background RR
configuration and no net phase shift is introduced. In t
sense, the emergence of the NRME configuration signa
phase transition in the gap structure~occurring in theV
space! instead of the commensurate-incommensurate ph
transition2 ~occurring in thev space!.

VIII. CONCLUSIONS

In this paper, we exactly solve a class of FK mode
whose potential hasd subwells in a period. The RO stabl
configuration is characterized by a winding number and
phase parameter inV, with elements 05b0<b1<b2<•••

<bd21<1.
To depict all RO stable configurations with hull function

phase parameters expressed in terms of extended num
must be included for the incommensurate case. The depi
configurations in such cases are shown to be nonrecur
The existence of these NRO configurations assures the e
tence of incommensurate NRME configurations for a su
able choice of potential parameters.
8-19
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The notions of subcommensurate clusters, and reson
between different types of openings are introduced to fu
characterize the gap structure. These notions are helpfu
visualizing phase transitions in the gap structures.

We provided an approach to determine the ground s
configurations through the information about the relative
sitions of tips for the potential and gaps for the RO config
rations. All the possibilities of degenerate ground state c
figurations are explored. Using these results, we are abl
study the phase diagram. In the incommensurate case
show that the phase diagram inT is an extension of the
complete devil’s staircase to (d21) dimensions. It will be
interesting to see if the conclusion is still valid in thed
→` limit.

We also provided a general method to implement an
commensurate NRME configuration. For any FK model b
yond TBA, which allows more than one discontinui
classes, it appears that such incommensurate NRME
figurations should also exist at the transition points for anl
to (l 11)-hole transitions. In general, NRME configuratio
emerge as long as a certain locking condition~either the
subcommensurate condition in our case or the commensu
condition! of the parameters to characterize the configurat
~including the phase parameters in our case and the win
number! is allowed to break down, which are expected
occur at boundaries of the domains of stability, where so
locking conditions prevail.
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APPENDIX A

From Eq.~3.10!, it is straightforward to show that

]2C

]b i]b j
52lDbiDbj (

n52`

`

e2unux

3d~Frac@nv1b i2b j # !, for 0, i , j ,d,

~A1!

]2C

]b i
2

5lDbi (
j 51,j Þ i

d21

Dbj (
n52`

`

e2unux

3d~Frac@nv1b i2b j # !, for 0, i ,d, ~A2!

]2C

]b i]v
52l

d0

2
Dbi (

j 51,j Þ i

d21

Dbj (
n52`

`

n e2unux

3d~Frac@nv1b i2b j # !, for 0, i ,d,

~A3!
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]2C

]v2
5l

d0

2 (
i , j 51

d21

DbiDbj (
n52`

`

n2e2unux

3d~Frac@nv1b i2b j # !, ~A4!

where d(•••) denotes the Dirac delta function. For eve
point (z0 ,z1 ,z2 , . . . ,zd21)[(v,b1 ,b2 , . . . ,bd21) in V̄
[$vP@0,1)% % V, define the curvature matrixM , with ele-
ments given by

M k,l5
]2C

]zk]z l
. ~A5!

This matrix can be decomposed into

M5l (
n52`

`

e2unuxF (
i 50

d21

Dbi
2d~Frac@nv#!Mn,0

12 (
0, i , j ,d

DbiDbjd~Frac@nv1b i2b j # !Mn,i , j G
~A6!

with

M k,l
n,0[n2

d0

2
dk,0d l ,0 ~A7!

and

M k,l
n,i , j[dk,id l ,i1dk, jd l , j2dk,id l , j2dk, jd l ,i1n

d0

2
~dk,0d l ,i

1dk,id l ,02dk,0d l , j2dk, jd l ,0!1n2
d0

2
dk,0d l ,0 . ~A8!

It is easy to check that every matrixMn,i , j is positive semi-
definite, where the fact that 0,d0,1 should be employed
As a result, the energy function is convex inV̄.

APPENDIX B

In general, for a subcommensurate cluster compose
1<k<d elements, the domain of stability is a
(k21)-dimensional convex hyperpolygon withk! vertices
in the projected phase subspace. All pieces of the hyper
faces on its boundary are flat~hyperplanes! and are the direct
product of two convex hyperpolygons of lower dimension
On the boundary hypersurface, the subcommensurate clu
is allowed to split into two groups. Each of the lower dime
sional hyperpolygons can still be decomposed in the sa
way until the vertices~with dimensionalities 0! are reached,
where the subcommensurate cluster is allowed to decom
into k one-element groups.

Let us inspect the circumstances of each domain of
bility. For a phase parameterb containingl subcommensu-
rate clusters, withd1 , d2 , . . . , anddl elements, respectively
The correspondingD@b# is ad2 l domain and the hypersur
faces on its boundary ared2 l 21 domains. Each of thes
8-20
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EXACTLY SOLVED FRENKEL-KONTOROVA MODEL WITH . . . PHYSICAL REVIEW B 66, 184108 ~2002!
d2 l 21 domains is also the overlapping region ofD@b#
with its adjacentd2 l domain. Hence, the number of ways
split the l holes ~subcommensurate clusters! into l 11
through continuously varying the elements inb gives the
number of d2 l 21 domains surroundingD@b#. For
D@b#ù]T5B ~i.e., n i.0 for all i ), the number is given by
( j 51

l (2dj22). Similar procedure to count the number
ways to split thel holes intok holes, for anyl ,k<d, will
give the number ofd2k domains on the boundary ofD@b#.
In particular, the number of vertices~0 domains! of this do-
main is given by) j 51

l (dj !).
On the other hand, ad2 l domain can play as the bound

ary ~overlapping region! of l !/ @k!( l 2k)! # distinct d2k do-
mains for l .k>1. The number ofd2k domains is from
counting the ways to coalesce adjacent holesl 2k times
among thel cyclic holes.

Care should be taken in counting the number ofd2 l do-
mains adjacent to a givend2 l domainD@b#. The overlap-
ping part of two adjacentd2 l domains can be ad2 l 21
domain or a domain with lower dimensionality. Here, w
only consider the cases with the overlapping parts beind
2 l 21 domains. The number is given byl ( j 51

l (2dj22) if
D@b#ù]T5B.
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